Weatherdem's Weblog

Bridging climate science, citizens, and policy


1 Comment

Climate Links: Resilient Arctic & Pacific Decadal Oscillation

Items that caught my eye this morning on Twitter:

Scientists: Arctic Is More Resilient To Global Warming Than We Thought” Who is “We” and why did “we” think the Arctic wasn’t resilient?  The second is easier to answer: because climate scientists with bullhorns told us for years that the Arctic was “DOOMED!”  I’ve written about this topic and knew when the record low extent and volume occurred in 2012 that it was likely one bad year and not the end of the world.  I haven’t seen or heard from those same scientists who breathlessly told the public about the doomed Arctic in 2012 that they were wrong (boy, were they wrong!).  While this article makes that point today (3 years too late), I don’t expect anyone to remember it when the Arctic has another bad summer.  2013 was a good Arctic summer: cooler than recent years – and guess what? Arctic ice responded by … growing – you know, what it’s supposed to do according to physics.  Headslap.

To truly grasp what we’re doing to the planet, you need to understand this gigantic measurement”  This is an article about “giga”: what the prefix means and how people should know about it.  I disagree with it from the perspective that the explanations don’t utilize anything truly useful.  For example: a gigaton is “more than 6 million blue whales”.  Who knows how much a big whale weighs?  Can you envision 6 million of them?  The basic problem with giga is it is so big that it defies our everyday experiences.  The superficial problem is despite being written by someone who understands science, the article likely misses its intended audience and thus is not useful.

At the risk of delving too far into technical issues, this article is useful for me personally based on relevance to my geographic region’s upcoming winter weather: “Subtle Differences to Previous El Niños Key to Winter Forecast, And Why the PDO Matters“.  The PDO is the Pacific Decadal Oscillation – a low-frequency natural climate pattern that has direct and indirect influences on weather across at least the western half of the nation.  Many people in my professional community are aware that there is currently a strong El Nino in the equatorial Pacific.  I noted from recent write-ups that there are also warm sea surface temperature anomalies in the north Pacific (e.g., off the west coast of the U.S.) – in addition to the warm anomalies across the central and eastern equatorial Pacific (hallmarks of El Ninos).

The northern Pacific anomalies are an oddity and this article helps explain why they might be present.  In the late 1990s, the PDO likely entered into a cool pattern, which helps explain a couple of things.  First, El Ninos during the 2000s and 2010s had lower amplitude (cooler).  And second, global temperatures didn’t rise as quickly since 1998 as they did during the previous PDO phase (1977-1998).  This observation is also known as the global warming “hiatus” or “pause”.  A cool PDO means Pacific sea surface temperatures are cooler than average.  One effect of this is the Pacific absorbs heat from the atmosphere and keeps the atmosphere cooler than it otherwise would be.  The opposite is also true: warmer than average Pacific SSTs releases more heat to the atmosphere than is absorbed and the atmosphere warms more than average.

Which leads me to the next article: “Has the PDO Flipped to a Warming Phase?”  The PDO typically stays in a warm or cool regime for 10 to 30 years – hence the “multidecadal” characterization.  As I wrote above, the PDO moved into a cool phase in the late 1990s.  Recent positive temperature anomalies (since 2014) might indicate that the PDO is temporarily positive or it might indicate the PDO switched back to a positive or warm phase.  This has significant implications for global weather patterns until it switches back to its negative phase.  For example, I wrote above that there is currently a strong El Nino.  If the PDO switched to a positive phase, it could enhance any El Nino.  It would also do what I described above: release heat back into the atmosphere.  This means the global warming “hiatus” is, if the PDO switches, over.

Back to the Colorado forecast.  With a warmer north and equatorial Pacific (positive PDO and ENSO), what kind of winter can we expect?  The answer won’t surprise you: it’s hard to tell.  There are few similar historical examples that scientists can use to issue a reliable forecast.  They have to determine if warmer ocean temperatures persist and how the atmosphere’s jet stream responds.  Ridge and trough locations over the western US will ultimately determine when we get snow and how much snow we get during each storm.


1 Comment

Commercialized Carbon Removal

The Guardian has an interesting article about startups working on capturing carbon dioxide from the air – a necessary technology if we are serious about any kind of climate goal with less CO2 than our business-as-usual pathway.  What are the companies doing and why is it important?  The article highlights three businesses: Carbon Engineering, Global Thermostat and Climeworks, which started in the 2000’s.  “All are aiming to make low-carbon fuels, used recycled CO2 and renewable energy to power the process.”  They’re making low-carbon fuels because small markets for them already exist.  Those markets will have to increase in size and scope for these startups to grow.

That’s one important aspect.  Another is the so-called “climate goal”.  As stated by international groups and increasing numbers of scientists, the climate goal is keeping CO2 concentrations below a certain threshold in order to keep global temperatures from increasing above 2C.  There is another international climate conference scheduled for later this year – the Conference of Parties in Paris, France (COP-21).  Leading up to that conference, countries are submitting carbon reduction goals that can be internationally monitored and verified.  Goals stated so far will definitely not meet the <2C goal – read about the UK’s goals here, for example, or here about the 45 countries who submitted plans already.  The reason is simple: we cannot deploy enough renewable energy generation or institute enough efficiency measures or change fuel types fast enough that will translate into halving global CO2 emissions within 10 years and going net negative by 2050.

What these companies are doing is directly related to that last goal: net negative CO2 emissions.  It won’t happen by 2050 or any other year unless we push serious money into research, development, and deployment.  It will take the private and public sectors working together for decades for utility-scale CO2 withdrawal from fuel burning and the free atmosphere.  These companies, and others, are the forefront of that industry.  But they need capital – a lot of it.  Cashflow at this juncture of their existence is crucial for them to exist long enough to deploy their technologies and evolve them as they run in the real world.  Anyone have a spare million or so dollars sitting around?


Leave a comment

Climate Papers

I found this article from a Tweet this morning:
Prof John Mitchell: How a 1967 study greatly influenced climate change science

The Carbon Brief blog asked climate scientists to nominate the most influential refereed paper.  Manabe & Wetherland’s 1967 paper entitled, “Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity” was the winner.  The paper incorporated the transfer of heat from the Earth’s surface to the atmosphere and back for the first time in a model.  Their model produced surface temperatures that were closer to reality than previous efforts.  They also tested constant and doubled atmospheric CO2 and found global mean temperatures increased by 2.4C under a doubling scenario.  In a nutshell, a simple model in 1967 projected the same warming signal as dozens of more sophisticated models do today.

I am not the first to pose the following question: what additional value do today’s extensive models provide over simple models?  Climate scientists still use simple models in their investigations.  They’re obviously useful.  But posing the question differently addresses my more recent interests: does the public derive more value from today’s climate model results than they did before with simpler and cheaper models?  The most obvious addition to me is the increasing ability to resolve regional climate change which is more variable than the global mean.  I do wonder how the public would react if they heard that climate models are largely generating the same projections given the amount of money invested in their development and analysis.  We have a partial answer already with the growth of climate skeptics in the public sphere.  Some people are obviously drawn to the problem.  As complex as all the aspects of the problem are and as busy as most people are, perhaps it is in science’s best interest to not make too much noise.

I will also note that one of the drawbacks of climate science in the academy is the utter lack of historical context for results.  My experience really has been the proverbial information dump as part of the information deficit model of learning.  The Facts Speak For Themselves.  I don’t remember hearing about this article that so many in my field consider seminal.  My colleagues would benefit from exposure to the history of their science.


Leave a comment

U.S. Energy Information Administration: Reference Projection

EIA released its 2015 reference case for electricity generation between 2000 and 2040.  The upshot: while they expect natural gas and renewables to continue their growth in the U.S.’s overall energy portfolio, coal is still very much in the mix in 2040.  From a climate perspective, if their reference projection becomes reality, we easily pass 2C warming by 2100.

Their reference projection “reflects current laws and regulations—but not pending rules, such as the Environmental Protection Agency’s Clean Power Plan“.  So it is no surprise that current laws and regulations result in passing the 2C threshold (or the GHG emissions which would actually lead to passing the 2C threshold).  The EPA’s Clean Power Plan isn’t in effect yet – and it will take time to analyze changes to actual generation once its final form does take effect.

 photo EIA Annual Energy Outlook 2015 Fig 1_zpsuiinhtg0.png

Figure 1. EIA’s Reference Case analysis and projection of U.S. electricity generation (2000-2040).

The good news is renewables’ share grows during the next 25 years.  Again, there’s no surprise there.  Nor is it surprising to see natural gas’ share also grow.  If you look at the left y-axis, the absolute share of renewables exceeds that of natural gas.  The bad news (from a 20th-century climate perspective) is that coal remains 34% of the electricity generation in this scenario.  That news is tempered by the fact that in both absolute and percentage terms, coal use is lower during the next 25 years than the last 15 years.  The absolute numbers are most frustrating from a climate perspective.  In 2040, this scenario projects >1.5 trillion kilowatt hours of coal generation.  Absent additional policy measures, that value remains largely unchanged during the next 25 years.  How do we address that?  Well, beating people over the head with scientific consensus claims hasn’t worked (and won’t in the future either): the American public know what causes global warming, once you get past self-identity question framing.  Once you interact with Americans on familiar terms, they’re much more willing to support global warming-related policies than many climate activists want you to believe.

 photo EIA Annual Energy Outlook 2015 Fig 2_zpsxotnkmbd.png

Figure 2. EIA’s renewable generation by type.

The EIA projects wind penetration to continue as it has for the last decade – almost doubling in absolute terms in the next 25 years.  We need that deployment and more to make a serious dent in GHG emissions.

 photo EIA Annual Energy Outlook 2015 Fig 3_zpsvigp121n.png

Figure 3. EIA’s six cases in their 2015 annual report.

You can see how different assumptions impacts EIA’s 2040 projections of electricity generation in 2040 compared to the 2013 historical case.  Don’t hope for high oil prices: renewables constitute more than 1 trillion kilowatt hours in that case, but coal also grows to nearly 2 trillion kWh!  Putting dreams aside, I don’t think those coal plants will all be running highly efficient carbon capture and sequestration technologies.

We still need RD&D for multiple technologies.  To do that, we need policies that prioritize innovative – and yes, risky – programs and projects.  The government is the only institution that can reliably assume that level of risk.  If we want to avoid 4C or 6C, we can; we need innovative policies and technologies today to stay below those thresholds.


Leave a comment

Warming Pause Research Continues

By my count, there are four leading scientific explanations for the short-term slowdown overlaying the long-term rate of global surface warming.  They are:

Enhanced heat uptake by the world’s oceans, especially over the Pacific due to enhanced easterly winds

Sustained small to medium-sized equatorial volcanic activity

Slightly reduced solar irradiance

Natural variability, including the Interdecadal Pacific Oscillation

One interesting aspect to  these explanations’ presence is most researchers believe their explanation is the leading one.  It is a symptom of the state of climate science:  specialization proliferation leads to poor cross-disciplinary communication.  Someone might have this within their purview, but I am currently unaware whether anyone is apportioning relative causality of these explanations together.  Attribution is challenging, of course, but such an effort seems worthwhile to me.

Some recent science updates on these explanations:

Heat Uptake by Several Oceans Drives Pause

Reconciling Warming Trends

 


Leave a comment

Some Short Notes on the US-China Climate Deal

The US-China climate deal announced in December 2014 generated big news.  It was yet another diplomatic success for the Obama administration and John Kerry’s State Department.  Nothing I say below takes away from that success.  In terms of climate action success, the deal ranks pretty low to me.  I’ll quickly summarize what I understand of the deal and then share why I think it isn’t a significant climate deal.

The Deal

Here is a quick summary (emphasis mine):

China, the world’s biggest emitter of greenhouse gases, pledged in the far-reaching agreement to cap its rapidly growing carbon emissions by 2030, or earlier if possible. It also set an ambitious goal of increasing the share of non-fossil fuels to 20 percent of its energy mix by 2030.

Obama announced a target to cut U.S. emissions 26 to 28 percent below 2005 levels by 2025 – eight years after he leaves office — the first time the president has set a goal beyond the existing 17 percent target by 2020.

The bolded portions highlight the agreement’s big news.  China agreed to a carbon emissions cap and the U.S. pushed its emissions reduction target out 5 years and increased the target by ~11% below 2005 levels.

Those are good goals.  Are they sufficient goals?  It depends on what you consider sufficient.  I consider goals that will actually achieve the stated climate target of <2C warming by 2100 as sufficient.  These goals won’t achieve that target.  But then, as I’ve written for some time now, I don’t think we can set goals that achieve the <2C by 2100 target.  There are technical and political hurdles that we chose not to surmount during the past 30+ years.  Why won’t this agreement achieve that target?  Let’s take a quick look from the same International Business Times article:

China completes a new coal plant every eight to 10 days, and while its economic growth has slowed, it is still expanding at a brisk rate exceeding 7 percent.

The scale of construction for China to meet its goals is huge even by Chinese standards. It must add 800 to 1,000 gigawatts of nuclear, wind, solar and other zero-emission generation capacity by 2030 — more than all the coal-fired power plants that exist in China today and close to the total electricity generation capacity in the United States.

And to meet its target, the United States will need to double the pace of carbon pollution reduction from 1.2 percent per year on average from 2005 to 2020 to 2.3 to 2.8 percent per year between 2020 and 2025.

Who out there truly believes that China can deploy 800 GW of zero-emission generation capacity in less than 15 years?  Remember before you answer in the affirmative that China’s deployment of coal-fired plants exceeded anything in history and that coal remains an extremely cheap energy resource.  All the other technologies currently cost more in terms of deployment.  What incentives does China, as a developing nation, have to spend more money for intermittent power sources?  They’re more interested in growing their economy, as the U.S. is.  Speaking of the U.S. – I emphasized part of that quote quite purposefully to highlight the scale of the issue.  China must, in 15 years, deploy as much generation infrastructure as exists in the entire U.S. today.  Our infrastructure took decades and decades to build out.  China needs to do the same thing, with more expensive infrastructure, in 15 short years!?  I will be among the first to congratulate China if they accomplish this daunting task and I don’t think China should shy away from working towards it.  I just don’t think they have a realistic chance of actually accomplishing it.

What about the U.S.?  We need to more than double the decarbonization rate of our economy to achieve our emissions goals.  Remember that most of the decarbonization achieved since 2005 was due first to the Great Recession and second to the natural gas boom.  The Great Recession is finally behind us, though effects linger.  The natural gas boom?  It’s currently experiencing strong headwinds as OPEC pushes the cost of oil down to the $50 range from the $100-110 range last year.  It’s economically unfeasible to frack for natural gas with $50 per barrel of oil.  While the natural gas industry won’t collapse (at least I hope it doesn’t), it won’t support additional decarbonization for the foreseeable future either.

I believe we are well on our way toward 3-4C warming by 2100 and must plan and act accordingly.  This deal, while diplomatically ambitious, is not climate ambitious enough to drive us away from those thresholds.


Leave a comment

“Arctic Sea Ice More Resilient Than Previously Thought”

Welcome back to me.  I took a break due to heavy class load and studying for qualifying exams.  I’m looking forward to a good 2015.  I tagged plenty of material while I was short on writing time, so stay tuned for lots of climate and energy science and policy discussions.

File this in the “who’da thunk?” category: research presented at the 2014 American Geophysical Union’s annual meeting showed recent summers over the Arctic were cooler than normal and as a result, Arctic sea ice melt wasn’t as extensive as previous record low years.

I remember all too many climate scientists tripping over one another in their mad rush to a microphone to declare that the Arctic would be ice-free in just a few short years – a claim I thought was silly and dangerous.

Why silly?  Because these same scientists, preaching objectivism and claiming science has an impenetrable hold on truth over all other comers, no more understood the cryosphere then than they do now.  This most result lays bare that type of truth: we don’t know enough about the cryosphere system to accurately or precisely project conditions in the near to medium future.  While it is very likely that summer Arctic sea ice will be missing at some point in the future, the timing of that event is very much in question.  I think it will be sooner than the IPCC AR4 model projections (see quoted statement below), which read: “In some projections, arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century.”  Papers written prior to the 2014 AR5 report projected ice-free conditions between 2037 and 2050.  But there is still 35 years in the meantime.  What will Arctic sea ice be like during those 35 years?  Like good scientists, we should collect data as well as run and test models during that time to more fully understand the system.  But good scientists do not claim knowledge they do not have.

The 2007 IPCC report made clear the level of uncertainty that exists:

A systematic analysis of future projections for the Arctic Ocean circulation is still lacking. Coarse resolution in global models prevents the proper representation of local processes that are of global importance (such as the convection in the Greenland Sea that affects the deep waters in the Arctic Ocean and the intermediate waters that form overflow waters).

Which leads to the dangerous part of scientists’ misguided efforts to “educate” the public at every turn, a strategy motivated by perceived successes by fossil fuel corporations and their backers.  Moreover, the perceived extreme position of those corporations elicited a corresponding response from scientist-activists.  One problem with this is the potential to appear foolish to the very people scientists are trying to convince of real climate risks when dire projections end up wrong.  Scientists historically and currently enjoy wide-spread and deep respect by the public.  I can’t believe that will continue if, for instance, grandiose claims of significant events end up wrong.  How often do you and your friends make fun of the local weatherman after a busted forecast?  I think scientists should instead tap into that deep reservoir of trust and leverage it intelligently.  If the best science indicates an ice-free Arctic by 2035-2050, then say that.  If conditions change radically, there will of course be a ready explanation that the public will gladly receive.

Follow

Get every new post delivered to your Inbox.

Join 347 other followers