Weatherdem's Weblog

Bridging climate science, citizens, and policy

Leave a comment

December 2013 CO2 Concentrations: 396.81ppm

During December 2013, the Scripps Institution of Oceanography measured an average of 395.10 ppm CO2 concentration at their Mauna Loa, Hawai’i Observatory.

This value is important because 395.10 ppm is the largest CO2 concentration value for any December in recorded history.  This year’s December value is approximately 2 ppm higher than December 2012′s.  Month-to-month differences typically range between 1 and 2 ppm.  This particular year-to-year jump is just outside of that range, but is smaller than some other recent months.  For example, February 2012’s year-over-year change was +3.37 ppm and May 2012’s change was +3.02 ppm.  Of course, the unending long-term trend toward higher concentrations with time, no matter the month or specific year-over-year value, as seen in the graphs below, is more significant.

The yearly maximum monthly value normally occurs during May. 2013 was no different: the 399.89ppm mean concentration in May 2013 was the highest value reported last year (neglecting proxy data).  May 2013’s record will hold until the end of February 2014 when the annual cycle pushes a monthly value above the record.  Just like in years past however, May 2014 is likely to set another new all-time monthly record (until February 2015 … you get the idea.)

How do concentration measurements change in calendar years?  Let’s take a look at two charts that set that context up for us:

 photo CO2_concentration_5y_trend_NOAA_201312_zpse6bb2b3c.png

Figure 1 – Monthly CO2 concentration values (red) from 2009 through 2014 (NOAA). Monthly CO2 concentration values with seasonal cycle removed (black). Note the yearly minimum observation occurred three months ago (red curve) and the yearly maximum value occurred seven months ago. CO2 concentrations will increase through May 2014, as they do every year, before falling again towards this year’s minimum value.

This graph doesn’t look that threatening.  What’s the big deal about CO2 concentrations rising a couple of parts per million per year anyway?  The problem is the long-term rise in those concentrations and the increased heating they impart on our climate system.  Let’s take a longer view – say 50 years: photo CO2_concentration_50y_trend_NOAA_201312_zpscc6d916c.png

Figure 2 – 50 year time series of CO2 concentrations at Mauna Loa Observatory (NOAA).  The red curve represents the seasonal cycle based on monthly average values.  The black curve represents the data with the seasonal cycle removed to show the long-term trend (as in Figure 1).  This graph shows the relatively recent and ongoing increase in CO2 concentrations.

The big deal is, as a greenhouse gas, CO2 increases the radiative forcing toward the Earth, which over time increases the amount of energy in our climate system as heat.  This excess and increasing heat has to go somewhere or do something within the climate system because the Earth can only emit so much long wave radiation every year.  Additional figures below show where most of the heat has gone recently.

CO2 concentrations are increasing at an increasing rate – not a good trend with respect to minimizing future warming.  Natural systems are not equipped to remove CO2 emissions quickly from the atmosphere.  Indeed, natural systems will take tens of thousands of years to remove the CO2 we emitted in the course of a couple short centuries.  Moreover, human technologies do not yet exist that remove CO2 from any medium (air or water).  They are not likely to exist at a large-scale for some time.  Therefore, the general CO2 concentration rise in the figures above will continue for many years, with effects lasting tens of thousands of years.

This month, I will once again present some graphs that provide additional context for CO2 concentration.  Here is a 10,000 year view of CO2 concentrations from ice cores to compare to the recent Mauna Loa observations:


Figure 3 – Historical CO2 concentrations from ice core proxies (blue and green curves) and direct observations made at Mauna Loa, Hawai’i (red curve).

This longer time series demonstrates how the curves in Figures 1 and 2 look when viewed against 10,000 additional years’ data.  Clearly, concentrations are significantly higher today than they were for thousands of years in the past.  While never completely static, the climate system our species evolved in was relatively stable in this time period.  You can see this by the relatively small changes in concentration over many hundreds of years.  Recent concentrations are an obvious aberration to recent history.

Alternatively, we could take a really, really long view:


Figure 4 – Historical record of CO2 concentrations from ice core proxy data (red), 2008 observed CO2 concentration value (blue circle), and 2 potential future concentration values resulting from lower (green circle) and higher (yellow circle) emissions scenarios used in the IPCC’s AR4.

Note that this graph includes values from the past 800,000 years, 2008 observed values (10ppm less than this year’s average value will be) as well as the projected concentrations for 2100 derived from a lower emissions and higher emissions scenarios used by the 2007 IPCC Fourth Assessment report.  It is clear that our planet’s climate existed within a range of CO2 concentrations between 200 and 300 ppm over the past 800,000 years.  Indeed, you would have go back millions of years into the geologic history of the planet to find the last time CO2 concentrations were near 400 ppm.  And let me be clear, the global climate then was much different from today: the globe was much warmer, there were no polar ice caps, and ecosystems were radically different from today’s.  That’s not to say today’s climate is “better” or “worse” than a paleoclimate.  It is to say that today’s ecosystems do not exist in the climate humans are forcing on the planet.

If our current emissions rate continues unabated, it looks like a tripling of average pre-industrial (prior to 1850) concentrations will be our future reality: 278ppm * 3 = 834ppm.  This graph also clearly shows how significant projected emission pathways could be when we compare them to the past 800,000 years.  It is important to realize that we are currently on the higher emissions pathway (towards 800+ppm; yellow dot), not the lower emissions pathway.

The rise in CO2 concentrations will slow down, stop, and reverse when we decide it will.  Doing so depends primarily on the rate at which we emit CO2 into the atmosphere and secondarily how effective CO2 removal in the future is.  We can choose 400 ppm or 450 ppm or almost any other target (realistically, 350 ppm seems out of reach within the next couple hundred years).  Our concentration target value choice is dependent on the type of policies we decide to implement.  It is our current policy to burn fossil fuels because we think doing so is cheap, although current practices are massively inefficient and done without proper market signals.  We will widely deploy clean sources of energy when they are cheap; we control that timing.  We will remove CO2 from the atmosphere if we have cheap and effective technologies and mechanisms to do so, which we also control to some degree.  These future trends depend on today’s innovation and investment in research, development, and deployment.  Today’s carbon markets are not the correct mechanism, as they are aptly demonstrating.  But the bottom line remains: We will limit future warming and climate effects when we choose to do so.


Leave a comment

More Discussion on Warming “Hiatus”

After a lengthy absence during which I studied for the most challenging mental exercise I’ve ever faced – departmental Comprehensive Exams – I’m going to kick off 2014 with another discussion about the early 21-century warming “hiatus”.  There is good reason for this: the climate is complex and understanding the individual parts remains as active research, to say nothing of how those parts interact, which adds complexity upon complexity.  It also gets me back in the swing of writing again.

The motivation for this piece is a new paper, “An apparent hiatus in global warming?”.  Here are important parts of the abstract (you can read the entire abstract at the link):

Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s.  Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5–1 W m−2 over the 2000s. […] An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976–1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

Some important notes here.  Greenhouse gases consistently increased during the 20th century, with increasing rates in recent decades.  But how do those GHGs affect the climate?  They emit radiation back towards the Earth’s surface, but it takes time for that radiation to manifest as detectable heat.  It’s a slowly accumulating effect, which other processes and phenomena influence.  To be more specific, the Earth’s surface temperature (land and ocean) shows the effect of that slow accumulation decades later.  This decade’s surface temperatures are largely the result of GHG concentrations from 20-30 years ago.  Which means that today’s concentrations will largely affect surface temperatures 20+ years from now, not today.

Let’s take a look at one of the study’s graph’s – global mean surface temperature anomalies from 1850-2012.

 photo GlobalMeanTemperature-TrenberthampFasullo2014_zps15374d73.jpg

Figure 1. Global mean surface temperature anomaly (1850-2012; Trenberth & Fasullo) as observed by the four most used datasets.

After a rapid rise in the 2nd half of the 20th century, it does indeed appear as though warming has paused since 2000.  But I just wrote that GHG concentrations increased throughout the 20th century and into the 21st.  So why does the “pause” appear in the temperature record?  Because of other climate processes, in this case natural processes that I’ve also written about (see here and here).

 photo Global12-monthrunningmeansurfaceTanomaly-TrenberthampFasullo20140113_zps3f9a0298.jpg

Figure 2.  Global mean surface temperature anomaly (12-month running mean) with El Nino (orange) and La Nina (blue) events highlighted.

Figure 2 shows how the biggest high-frequency climate oscillation impacts global mean surface temperature anomalies.  Following the record-setting 1997-1998 El Niño, annual temperature anomalies stayed primarily within +0.6 to +0.7C.  The paper hypothesizes that the 97-98 El Niño initiated a change in longer-term oscillations – namely the Pacific Decadal Oscillation (related to the Interdecadal Pacific Oscillation, which impacts my own research).

 photo PDOIndex1950-2013TrenberthampF20140113_zpse6e432fa.jpg

Figure 3. Time series of Pacific Decadal Oscillation Index (1950-2013).

Phases characterize the index: warm (1977-1998) and cool (1948-1976 & 1999-current).  Look back at Figure 1 and the PDO’s effect on global mean surface temperature anomalies is clear: less warming is present during the cool phases and more warming during the warm phase.  Now, this analysis is limited by the relatively short observational period, but researchers are teasing out PDO effects from paleoclimatic studies going back hundreds of years.  The PDO’s cool phase is characterized by cooler than normal eastern Pacific sea surface temperatures.  Averaged out over 10-30 years, the cool phase looks remarkably similar to La Nina.  Conversely for the warm phase, the eastern Pacific is much warmer than normal and resembles a long-term El Niño.

Now for some complexity.  The short-lived El Niño/La Niña events occur on top of the PDO signal.  So the Earth can have a long-term cool phase (negative PDO) and have both warm and cool ENSO phases (El Niño/La Niña) on annual to interannual timescales.  Look at Figure 2 again to see the additive impacts.  The 1997-98 El Niño occurred at the end of the last PDO warm phase, but also during a warming trend whose timescale exceeds the PDO’s (anthropogenic climate change).  Four recent La Niñas occurred during the current negative (cool) PDO phase within the past 10 years (see Figure 2).  Is it any wonder then that global mean surface temperatures haven’t risen at the same rate they did during the 1977-1998 period?

So what does this mean going forward?  First of all, I disagree with the 2nd half of Trenberth’s statement: “This year or later, it’s possible that El Niño will occur again in the Pacific. Will that trigger another change in the PDO, that in turn could trigger a resurgence in global surface temperature warming? Only time will tell, Trenberth explained.”  Given the historical PDO record, I seriously doubt the next El Niño will switch the PDO phase back to positive (warm).  The PDO has been in its current negative phase for only 14 years or so now.  It’s more likely that this negative phase will continue for at least the next 5 years.  I wouldn’t be surprised if it continued for the next 10-15 years.  Which doesn’t mean global temperatures won’t rise; it means they would likely rise at a slower rate than they did during the late 20th century.  When the next PDO positive phase occurs, global temperatures will likely show that shift by increasing at a faster rate than during the past 15 years.

Lastly, just because the Earth’s surface hasn’t warmed quite as much as expected in the past 10-15 years doesn’t mean the heat disappeared.  What you heard as a kid was true: energy cannot be destroyed, only changed.  The heat energy emitted by GHGs during the past 30 years went to a place humans don’t measure very well or very much: the deep ocean, as this graph shows:

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 4.  Anomalous ocean heat energy locations since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

This graph shows that during the global warming “pause” period (1999-current), the ocean below 700m absorbed the majority of the heat of the entire ocean system.  You can also quite clearly see the anomalous heat content of recent years.  This increased oceanic heat content will manifest itself in upcoming decades and centuries.  Sea levels will rise because warmer substances occupy more volume than cooler substances.  That effect alone threatens the majority of the Earth’s human population.  It also threatens frozen water reservoirs: the globe’s ice caps.  As they melt at an increasing rate throughout this century, global sea levels will rise even further.  As warmer deep ocean water returns to the surface and interacts with a warmer atmosphere which can hold more moisture and therefore heat, the heat will eventually transfer to the atmosphere where we can more regularly measure it.  So aside from the natural climate oscillations discussed above (ENSO & PDO), much of this heat will affect us at some point.

Will we be ready for those impacts?  Contemporary examples suggest no, but municipalities are taking already visible threats more seriously every day.  Those local efforts will guide actions at higher levels of government and society.