Weatherdem's Weblog

Bridging climate science, citizens, and policy


Leave a comment

October 2012 CO2 Concentrations: 391.07ppm

The Scripps Institution of Oceanography measured an average of 391.03ppm CO2 concentration at their Mauna Loa, Hawai’i’s Observatory during October 2012.

391.03ppm is the highest value for October concentrations in recorded history. Last year’s 388.92ppm was the previous highest value ever recorded.  This October’s reading is 2.11ppm higher than last year’s.  This increase is significant.  Of course, more significant is the unending trend toward higher concentrations with time, no matter the month or specific year-over-year value, as seen in the graphs below.

The yearly maximum monthly value normally occurs during May. This year was no different: the 396.78ppm concentration in May 2012 was the highest value reported this year and in recorded history (I’m neglecting proxy data).  If we extrapolate this year’s value out in time, it will only be 2 years until Scripps reports 400ppm average concentration for a singular month (likely May 2014).  Note that I previously wrote that this wouldn’t occur until 2015.  I’ve seen comments on other posts that CO2 measured at Mauna Loa should be higher than anywhere else because of its elevation and specific location.  It is important to understand that this statement exists somewhere between correct to purposefully confusing to outright deceitful.  CO2 is a well-mixed constituent of the atmosphere.  That means that emissions of new CO2 are quickly and pretty evenly distributed in space.  While point locations might vary between each other (differences between polar and tropical CO2 concentrations at the same point in time vary the most, for example), the observations at Mauna Loa are very representative of those found across the set of observation stations on the globe.  In addition, as the graphs below will help demonstrate, the historical record is very clear: concentrations have done only one thing in the past 50+ years at Mauna Loa (or any other station, for that matter): increased.  There has been no plateauing or decrease in that time period.  Moreover, concentrations at all the individual recording sites show the same long-term trend: an increase.

That being said, it is worth noting here that stations measured 400ppm CO2 concentration for the first time in the Arctic earlier this year.  The Mauna Loa observations represent more well-mixed (global) conditions while sites in the Arctic and elsewhere more accurately measure local and regional concentrations.

Judging by the year-over-year increases seen per month in the past 10 years, I predict 2012 will not see an average monthly concentration below 390ppm.  Last year, I predicted that 2011′s minimum would be ~388ppm.  I overestimated the minimum somewhat since both September’s and October’s measured concentrations were just under 389ppm.  So far into 2012, my prediction is holding up.  October’s concentration is typically the smallest of any individual month’s.  We will know for certain next month whether October’s 391.0ppm is the minimum this year or not.

Photobucket

Figure 1 – Time series of CO2 concentrations measured at Scripp’s Mauna Loa Observatory in October: from 1957 through 2012.

This time series chart shows concentrations for the month of October in the Scripps dataset going back to 1957. As I wrote above, concentrations are persistently and inexorably moving upward. Alternatively, we could take a 10,000 year view of CO2 concentrations from ice cores and compare that to the recent Mauna Loa observations:

Photobucket

Figure 2 – Historical (10,000 year) CO2 concentrations from ice core proxies (blue and green curves) and direct observations made at Mauna Loa, Hawai’i (red curve).

Or we could take a really, really long view into the past:

Photobucket

Figure 3 – Historical record of CO2 concentrations from ice core proxy data, 2008 observed CO2 concentration value, and 2 potential future concentration values resulting from lower and higher emissions scenarios used in the IPCC’s AR4.

Note that this graph includes values from the past 800,000 years, 2008 observed values (~6-8ppm less than this year’s average value will be) as well as the projected concentrations for 2100 derived from a lower emissions and higher emissions scenarios used by the IPCC.  Has CO2 varied naturally in this time period?  Of course it has.  But you can easily see that previous variations were between 180 and 280ppm.  In contrast, the concentration has, at no time during the past 800,000 years, risen to the level at which it currently exists.

Moreover, if our current emissions rate continues unabated, it looks like a tripling of average pre-industrial concentrations will be our reality by 2100 (278 *3 = 834).  This graph clearly demonstrates how anomalous today’s CO2 concentration values are (much higher than the average recorded over the past 800,000 years).  It further shows how significant projected emission pathways are.  I will point out that our actual emissions to date are greater than the higher emissions pathway shown above.  This reality will be partially addressed in the upcoming 5th Assessment Report, currently scheduled for public release in 2013-14.

Given our historical emissions to date and the likelihood that they will continue to grow at an increasing rate for at least the next 25 years, we will pass a number of “safe” thresholds – for all intents and purposes permanently as far as concerns our species. It is time to start seriously investigating and discussing what kind of world will exist after CO2 concentrations peak at 850 and 1100ppm. I don’t believe the IPCC or any other knowledgeable body has done this to date. To remain relevant, I think institutions who want a credible seat at the climate science-policy table will have to do so moving forward.  The AR5 might possibly fill in some of this knowledge gap.  I expect most of that work has recently started and will be available to the public around the same time as the AR5 release, which is likely to cause some confusion in the public.

As the second and third graphs imply, efforts to pin any future concentration goal to a number like 350ppm or even 450ppm will be incredibly difficult – 350ppm more so than 450ppm, obviously. Beyond an education tool, I don’t see the utility in using 350ppm – we simply will not achieve it, or anything close to it, given our history and likelihood that economic growth goals will trump any effort to address CO2 concentrations in the near future (as President Obama himself stated recently).  That is not to say that we should abandon hope or efforts to do something.  On the contrary, this post series informs those who are most interested in doing something.  With a solid basis in the science, we become well equipped to discuss policy options.  I join those who encourage efforts to tie emissions reductions to economic growth through scientific and technological research and innovation.  I am convinced that path is the only credible one moving forward.


Leave a comment

Warmest Year on Record Likely For US in 2012

As readers of this blog are likely aware, 2012 was brutally hot across most of the U.S. in the spring and summer.  All-time records at hundreds of stations fell, monthly records were shattered, and seasonal records were similarly set.  These conditions led to speculation that 2012 would be the U.S.’s warmest.

That speculation is likely to be borne out as true.  Even though October was the first month in seventeen in which average contiguous U.S. temperatures were below average instead of above average, the January-October average temperature continued to track well above the previous record-setting year – 1998 – as the following graph demonstrates.

Photobucket

Figure 1. 2012 observed and projected contiguous U.S. temperature anomalies compared to previous top-5 anomalous years.

The current record holder is, of course, 1998 – the year which saw the strongest El Nino event of the 20th century end.  2012’s anomaly are therefore very important in context: a moderate La Nina event ended in 2012.  La Nina is typically characterized as a cooling event while El Nino is typically characterized as a warming event.  Now, those characterizations are global in nature, so interpreting their effects for the U.S. only gets more complex.  The point of this is the following: as the globe as a whole continues to warm and future El Ninos occur, the U.S. is likely to see warmer years than 2012.

The graph also contains the following information.  November and December would have to be among the ten coldest months on record in order for the 2012 average to dip below 1998’s record.  Well, November has been warmer than average so far through the first couple of weeks.  That trend is forecasted to continue for the next couple of weeks (not record-setting hot, just warmer than the 20th century average).  Therefore, the trend would have to absolutely reverse itself in December in order for 2012 to not set the new record.  Simply put, the chances of that happening are incredibly remote.

I haven’t blogged about it yet, but Hurricane Sandy’s landfall and subsequent widespread destruction might start small-scale conversations regarding the state of our infrastructure in today’s world.  Without even considering the potential future effects of anthropogenic global warming, it is clear to more and more people as weather disasters strike that we are not equipped as a society to adequately handle today’s climate.  Conditions have largely been beneficial to benign throughout the 20th century.  That wasn’t always the case prior to that and it’s likely that it won’t be the case in the future.  We have to have honest conversations about this and make hard decisions about what to build where and what industries our society should be built on.  What aid do we provide to farmers in areas that are drought-prone?  What aid do we provide to homeowners that live in high-risk areas?  What do our building codes and zoning laws allow today and should those same things be allowed in the future?  These are just a small sample of the kind of policy questions we have to ask when we see the above graph and many others like it.

#####

On another topic, I’m almost done with classes this semester.  I’ll get back to much more frequent posting in another month.