Weatherdem's Weblog

Bridging climate science, citizens, and policy


Leave a comment

What will 2040 US GHG emissions be

if this graph is anywhere close to accurate?

 photo Electricgeneratingcapacityadditions2000-2040-EIA_zpsa9ed57ae.png

That projection of electric generating capacity additions does not get us to stated emissions goals (e.g., 80% or 90% of 2005 levels by 2050.)  We can easily observe that out-year EIA projections probably are not very accurate and that’s a fair point.  I doubt, for instance, that this graph takes the EPA’s recent proposed rule into account.  The next 5-10 years is probably close to what will happen, however – close enough that any difference will not significantly impact say 2030 or 2040 emissions.

Note the vast difference between natural gas/oil additions for any single year between 2000-2005 and total renewables during any other year.  The only year that comes close to the same size for renewables will be 2015, but that still only amounts to 1/3 to 1/2 the natural gas additions ten years ago.  In order to achieve stated emissions goals, renewable additions will have to double every year between now and 2040.  That’s because new additions have to replace the oldest coal plants first, followed by oldest natural gas plants, and also meet increasing future demand, and generate enough energy during peak production periods to exceed peak consumption periods (not the same times of day).

Additionally, if we want to keep global mean annual temperature increases <2C, the projected natural gas additions have to tail off to zero (not stay constant) because they still emit GHGs.  And if all of that weren’t challenging enough, we must remove carbon from the atmosphere that is due to historical combustion and leakage.  But the basic story of this graph remains: this projection will not enable us to achieve stated emission reduction goals.  This graph is therefore useful in helping us understand what policies are working and what needs to be done in order to approach our emission goal.  For instance, renewables appear to enter a period of no growth in the 2020s.  That is probably unrealistic, but what policies should we consider to boost their deployment above 2005-2010 levels during the 2020s and on into the 2030s and beyond?  How about finance policies for starters?  How about long-term federal and state guarantees?  If we enact the EPA’s proposed power plant rule in most any way close to how it is currently structured, the 2020s and 2030s will likely look very different from this.  That rule could be a good start toward meeting future goals (just not 90% reduction by 2050 or <2C warming; more like 30% reduction by 2050).


Leave a comment

Deep Decarbonization Pathways Interim Report Released

An international group of folks put together an interim report analyzing “Deep Decarbonization Pathways”.  Decarbonization refers to the process of using less carbon within an economy.  The intent of the report was to show ways forward to keep global mean temperatures below 2C.  Readers of this blog know that I no longer think such a goal is achievable given the scope and scale of decarbonization.  We have not moved from a “business-as-usual” approach and have run out of time to reduce GHG emissions prior to relevant limits to meet this goal.  I argue the exact opposite of what the authors describe in their summary:

We do not subscribe to the view held by some that the 2°C limit is impossible to achieve and that it should be weakened or dropped altogether.

Thus the main problem with this report.  They’re using a threshold that was determined without robustly analyzing necessary actions to achieve it.  In other words, they a priori constrain themselves by adopting the 2C threshold.  Specifically, a more useful result would be to ascertain what real-world requirements exist to support different warming values in terms real people can intuitively understand.  The report is not newsworthy in that it reaches the same results that other reports reached by making similar assumptions.  Those assumptions are necessary and sufficient in order to meet the 2C threshold.  But examination unveils something few people want to recognize: they are unrealistic.  I will say that this report goes into more detail than any report I’ve read to date about the assumptions.  The detail is only slightly deeper than the assumptions themselves, but are illuminating nonetheless.

An important point here: the authors make widespread use of “catastrophe” in the report.  Good job there – it continues the bad habit of forcing the public to tune out anything the report has to say.  Why do people insist on using physical science, but not social science to advance policy?

On a related note, the report’s graphics are terrible.  They’re cool-color only, which makes copy/paste results look junky and interpretation harder than it should be.  So they put up multiple barriers to the report’s results.  I’m not sure why if the intent is to persuade policy makers toward action, but …

Continue reading


Leave a comment

Distopias are not Preferable to Distopias

Grist’s Nathanael Johnson has a good article up discussing the Anthropocene – a term that describes Earth influenced by mankind.  I highly recommend reading it, then thinking through what Andy Revkin and Clive Hamilton discussed.

I for one disagree with Clive Hamilton’s language.  Some examples:

I don’t accept this idea that we consumers in the West are irrevocably attached to cheap energy.

This from a person in Australia (dominant energy source: cheap coal) using 1st world technology to talk with Johnson and Revkin across the planet using Skype.  Those technologies are also powered, by and large, by cheap energy.  He continues with:

It’s easy for us in the US and Australia to forget that some countries in Europe have less than half — a third — of our emissions per person. And with strong public support, I’m thinking of Germany here, for policies that cut emissions. I think Western consumers can quite easily be weaned off high-polluting energy sources.

This ignores easily verified objective data that shows if the developing world used German-level energy, global energy consumption would triple or quadruple.  The developing world, like the developed, will expand energy production as cheaply as possible – and that means fossil fuels.  How will we meet stated climate goals with 3x more dirty energy?   Moreover, the West has not weaned itself from high-polluting energy sources.  If it was easy, we would have done it by now.  If we want to achieve the deepest emissions cuts pathway modeled by the IPCC, we need one 1GW carbon-free energy plant to come online every day between now and 2050.  That simply isn’t happening.

Or we can look at it with open eyes, and allow it to blast away all our utopian imaginings, and say, well, we are in really deep trouble, and it’s extremely unlikely that we are going to get out of it unscathed. So what do we do in that situation? And what does it mean for how we act? Does it mean we go for the muddle-through approach even though we know the consequences are likely to be catastrophic? Or do we fundamentally try to rethink and change strategies?

The “utopian imaginings” Hamilton refers to are solidly based in reality.  They are projections that new technologies will allow people in the future access to low-polluting energy at prices lower than today.  These technologies include renewables, carbon capture and sequestration, and things we can’t envision today because they haven’t been invented.  That’s not utopian.  By analogy, Hamilton would have said in the 1880s that mechanized transport will never exist and so stop imagining utopia.  But I also have problems with his characterization that we “are in really deep trouble”.  This is based on the concept of “civilization collapsing” and “catastrophe”.  I have written at length against this language since I read social science peer-reviewed literature that using it immediately makes people shut down anything else you have to say.  Thus, Hamilton and others continue to accomplish exactly the opposite of what they want.

Thankfully, Johnson immediately followed up with what Hamilton’s suggestion might look like.  You know, suggest something practical and not purely philosophical.  Hamilton’s response:

I don’t have an answer to that, Nate, except to say the first thing we must do is face up to the facts.

This is the fundamental problem for climate activists in my opinion.  They don’t have practical suggestions for solutions.  But they want everyone else in the same disaster-based landscape that the activists are in.  Only after everyone is miserable and paralyzed can we talk about ways forward.  This is not the solution.  Or it’s not my solution, anyway.  I just wrote a post about what happens when you present facts to people without the appropriate context.  In that example, N.C. residents directly challenged “the facts”.  And instead of long-term sea-level policy, N.C. now has short-term sea-level policy because a Commission did what Hamilton suggests without offering practical ways forward.  There isn’t evidence that Hamilton can be persuaded on this, as he ends with this:

It’s a question of a bad or less bad Anthropocene.

Good luck getting people to react to that in ways that advance a clean energy future.  Because history quite clearly tells us it won’t happen any time soon.  Hamilton in this instance advocates for a distopia while disdaining others’ viewpoints because he thinks they are distopian.  We should not replace one for the other.


Leave a comment

REMI’s Carbon Tax Report

I came across former NASA climate scientist James Hansen’s email last week supporting a carbon tax.  At the outset, I fully support this policy because it is the most economically effective way to achieve CO2 emission reductions.  An important point is this: it matters a lot how we apply the tax and what happens to the money raised because of it.  Many policy analysts think that the only way a carbon tax will ever pass is for the government to distribute the revenue via dividends to all households.  This obviously has appealing aspects, not least of which is Americans love free stuff.  That is, we love to reap the benefits of policies so long as they cost us nothing.  That attitude is obviously unsustainable – you have simply to look at the state of American infrastructure today to see the effects.

All that said, the specific carbon tax plan Hansen supported came from a Regional Economic Models, Inc. report, which the Citizens Climate Lobby commissioned.  The report found what CCL wanted it to find: deep emission cuts can result from a carbon tax.  There isn’t anything surprising with this – many other studies found the exact same result.  What matters is how we the emission cuts are achieved.  I think this study is another academic dead-end because I see little evidence how the proposed tax actually achieves the cuts.  It looks like REMI does what the IPCC does – they assume large-scale low-carbon energy technologies.  The steps of developing and deploying those technologies are not clearly demonstrated.  Does a carbon tax simply equate to low-carbon technology deployment?  I don’t think so.

First, here is an updated graphic showing REMI’s carbon emission cuts compared to other sources:

 photo EPA2014vsEIA2012vsKyotovsREMI2014_zps961bb7c7.png

The blue line with diamonds shows historical CO2 emissions.  The dark red line with squares shows EIA’s 2013 projected CO2 emissions through 2030.  EIA historically showed emissions higher than those observed.  This newest projection is much more realistic.  Next, the green triangles show the intended effect of EPA’s 2014 power plant rule.  I compare these projections against Kyoto `Low` and `High` emission cut scenarios.  An earlier post showed and discussed these comparisons.  I added the modeled result from REMI 2014 as orange dots.

Let me start by noting I have written for years now that we will not achieve even the Kyoto `Low` scenario, which called for a 20% reduction of 1990 baseline emissions.  The report did not clearly specify what baseline year they considered, so I gave them the benefit of the doubt in this analysis and chose 2015 as the baseline year.  That makes their cuts easier to achieve since 2015 emissions were 20% higher than 1990 levels.  Thus, their “33% decrease from baseline” by 2025 results in emissions between Kyoto’s `Low` and `High` scenarios.

REMI starts with a $10 carbon tax in 2015 and increases that tax by $10/year.  In 10 years, carbon costs $100/ton.  That is an incredibly aggressive taxing scheme.  This increase would have significant economic effects.  The report describes massive economic benefits.  I will note that I am not an economist and don’t have the expertise to judge the economic model they used.  I will go on to note that as a climate scientist, all models have fundamental assumptions which affect the results they generate.  The assumptions they made likely have some effect on their results.

Why won’t we achieve these cuts?  As I stated above, technologies are critical to projecting emission cuts.  What does the REMI report show for technology?

 photo REMI2014ElectricalPowerGeneration-2scenarios_zpse41c17d9.png

The left graph shows US electrical power generation without any policy intervention (baseline case).  The right graph shows generation resulting from the $10/year carbon tax policy.  Here is their models’ results: old unscrubbed coal plants go offline in 2022 while old scrubbed coal plants go offline in 2025.  Think about this: there are about 600 coal plants in the US generating the largest single share of electricity of any power source.  The carbon tax model results assumes that other sources will replace ~30% of US electricity in 10 years.  How will that be achieved?  This is the critical missing piece of their report.

Look again at the right graph.  Carbon captured natural gas replaces natural gas generation by 2040.  Is carbon capture technology ready for national-level deployment?  No, it isn’t.  How does the report handle this?  That is, who pays for the research and development first, followed by scaled deployment?  The report is silent on this issue.  Simply put, we don’t know when carbon capture technology will be ready for scaled deployment.  Given historical performance of other technologies, it is safe to assume this development would take a couple of decades once the technology is actually ready.

Nuclear power generation also grows a little bit, as does geothermal and biopower.  This latter technology is interesting to note since it represents the majority of the percentage increase of US renewable power generation in the past 15 years (based on EIA data) – something not captured by their model.

The increase in wind generation is astounding.  It grows from a few hundred Terawatt hours to over 1500 TWh in 20 years time.  This source is the obvious beneficiary to a carbon tax.  But I eschew hard to understand units.  What does it mean to replace the majority of coal plants with wind plants?  Let’s step back from academic exercises that replace power generation wholesale and get into practical considerations.  It means deploying more than 34,000 2.5MW wind turbines operating at 30% efficiency per year every year.  (There are other metrics by which to convey the scale, but they deal with numbers few people intuitively understand.)  According to the AWEA, there were 46,100 utility-scale wind turbines installed in the US at the end of 2012.  How many years have utilities installed wind turbines?  Think of the resources required to install almost as many wind turbines in just one year as already exist in the US.  Just to point out one problem with this installation plan: where do the required rare earth metals come from?  Another: are wind turbine supply chains up to the task of manufacturing 34,000 wind turbines per year?  Another: are wind turbine manufacturing plants equipped to handle this level of work?  Another: are there enough trained workers to supply, make, transport, install, and maintain this many wind turbines?  Another: how is wind energy stored and transmitted from source to use regions (thousands of miles in many cases).

Practical questions abound.  This report is valuable as an academic exercise, but  I don’t see how wind replaces coal in 20 years time.  I want it to, but putting in a revenue-neutral carbon tax probably won’t get it done.  I don’t see carbon capture and sequestration ready for scale deployment in 10 years time.  I would love to be surprised by such a development but does a revenue-neutral carbon tax generate enough demand for low-risk seeking private industry to perform the requisite R&D?  At best, I’m unconvinced it will.

After doing a little checking, a check reminded me that British Columbia implemented a carbon tax in 2008; currently it is $40 (Canadian).  Given that, you might think it serves as a good example of what the US could do with a similar tax.  If you dig a little deeper, you find British Columbia gets 86% of its electricity from hydropower and only 6% from natural gas, making it a poor test-bed to evaluate how a carbon tax effects electricity generation in a large, modern economy.


Leave a comment

More on EPA’s Proposed CO2 Emissions Rule: Podesta; Role of Science

I just found this article and wanted to point out a couple of things related to my post on the EPA’s proposed CO2 emissions rule.  The first (emphasis mine):

In a two-hour interview conducted just weeks before his return to Obama’s inner circle as White House Counsel, Podesta told me that the president had been willing to take risks and expend political capital on the climate issue. “But fifty years from now, is that going to seem like enough?” Podesta asked. “I think the answer to that is going to be no.

Podesta blamed Obama’s spotty climate record in part on the president’s top aides during his first term (aides who Podesta, as Obama’s transition director in 2008, helped select). The aides’ attitudes about climate change, Podesta recalled, were dismissive at best: “Yeah, fine, fine, fine, but it’s ninth on our list of eight really important problems.

I agree with Podesta’s assessment that fifty years from now people will look back and judge that Obama and everyone else didn’t do enough to curtail GHG emissions and prevent a great deal of additional global warming.  That isn’t a slight on Obama’s character – or anyone else’s – it’s a statement on how I view action on the topic.

Isn’t it interesting that Podesta helped select the same aides who refused to push climate higher on the problem list?  Podesta is a smart guy – he knew what peoples’ pet issues were and what weren’t on their list of priorities.  So in the same interview that Podesta says Obama’s climate actions won’t seem like enough in fifty years, Podesta lays some blame at the feet of first-term aides who didn’t prioritize climate for the lack of Obama’s action.  Perhaps a little self-assessment didn’t make the article due to editing, but it would be nice to see people take responsibility for how we’ve gotten here.  That includes Democrats and climate activists right along with Republicans and skeptics.

The next quote really rankles me:

The Obama Administration’s newly proposed regulations on power plants illustrate how the president continues to fall short of what science demands in the face of rapidly accelerating climate change. From a scientific perspective, there is much less to these regulations than either industry opponents or environmental advocates are claiming.

[...]

The science he is faced with [...] demand actions that seem preposterous to the political and economic status quo.

This language implicitly assumes that what certain people want should take precedence over others.  The author, like many others, think they would like those certain people to be scientists instead of conservative theologians or accountants or any other person.  Science doesn’t demand anything in this or any other instance.  We use physical science to assess what the physical effects of GHGs have been and will be on the climate system.  That’s where physical science ends.  If you want to do anything about that information, you bring in social science – political science, sociology, environmental science, philosophy, etc.  Those fields have much to say about what to do and why a particular course of action might be desirable – see normative theory.

Too many people confuse the two.  Or more accurately in the climate change realm, they argue using physical science as a proxy in normative debates.  This is a large source of the polarization of science today.  Instead of using proxies, people should debate the core issues.  If the core issue is the political left versus right, the debate should be on value systems and specific values.  Instead, people drag climate science into the normative debate and among the results is the refusal to accept climate science as valid by skeptics.  This has more to do with perception of legitimate authority than the actual science.

Back to the science:

Podesta, however, acknowledged that Obama’s climate policy (as it stood last November) would not hit the 2°C target. “Maybe it gets you on a trajectory to three degrees,” he said, “but it doesn’t get you to two degrees.”

I wrote much the same thing.  The science is quite clear on this.  Whether you think the policy is bad or good or whether hitting or not hitting the 2°C target is a bad or good thing are separate discussions.  Personally, I think not hitting the 2°C target is a bad thing.  But I know that’s a normative judgment about a scientific result.  I therefore support more effective policy actions such as a carbon tax.

Again, this rule is merely proposed at this time.  EPA originally said it would propose the rule in 2011-2012, then put it on indefinite hold so Obama could run for re-election.  It will now face legal challenges.  It will not go into effect for at least two years, and quite possibly four to six years after all the legal challenges.  In that time frame, we will have at least one new president, who will put their choice for EPA administrator in place, who will be responsible for directing the agency on the rule’s implementation.  The rule will be effective until 2030 and will face two additional presidential election results.  Do climate activists think Republicans will leave the rule alone through 2030?  How do we square that with the knowledge the rule is far from sufficient to limit warming to <2°C?  What are the next policy steps with these real world boundaries?


3 Comments

EPA’s Proposed CO2 Emissions Rule in Context

 photo EPA2014vsEIA2012vsKyoto_zps8d150e25.png

If you follow climate and energy news, you probably have or will encounter media regarding today’s proposed CO2 emissions rule by the EPA.  Unfortunately, that media will probably not be clear about what the rule means in understandable terms.  I’m writing this in an attempt to make the proposed rule more clear.

The graph above shows US CO2 emissions from energy consumption.  This includes emissions from coal, oil, and natural gas.  I have differentiated historical emissions in blue from 2013 EIA projections made in red, what today’s EPA proposal would mean for future emission levels, and low and high reductions prescribed by the Kyoto Protocol, which the US never ratified.

In 2011, historical US energy-related emissions totaled 5,481 million metric tons of CO2.  For the most part, you can ignore the units and just concentrate on emission’s magnitude: 5,481.  If the EPA’s proposed rule goes into effect and achieves what it sets out to achieve, 2020 emissions could be 4,498 MMT and 2030 emissions could be 4,198 MMT (see the two green triangles).  Those 2030 emissions would be lower than any time since 1970 – a real achievement.  It should be apparent by the other comparisons that this potential achievement isn’t earth shaking however.

Before I get further into that, compare the EPA-related emissions with the EIA’s projections out to 2030.  These projections were made last year and are based on business as usual – i.e., no federal climate policy or EPA rule.  Because energy utilities closed many of their dirtiest fossil fuel plants following the Great Recession due to their higher operating costs and the partial transfer from coal to natural gas, the EIA now projects emissions just above 2011′s and below the all-time peak.  I read criticism of EIA projections this weekend (can’t find the piece now) that I think was too harsh.  The EIA historically projected emissions in excess of reality.  I don’t think their over-predictions are bad news or preclude their use in decision-making.  If you know the predictions have a persistent bias, you can account for it.

So there is a measurable difference between EIA emission projections and what could happen if the EPA rule is enacted and effective.  With regard to that latter characterization, how effective might the rule be?

If you compare the EPA emission reductions to the Kyoto reductions, it is obvious that the reductions are less than the minimum requirement to avoid significant future climate change.  But first, it is important to realize an important difference between Kyoto and the EPA rule: the Kyoto pathways are based off 1990 emissions and the EPA is based off 2005 emissions.  What happened between 1990 and 2005 in the real world?  Emissions rose by 19% from 5,039 MMT to 5,997 MMT.  The takeaway: emission reductions using 2005 as a baseline will result in higher final emissions than using a 1990 baseline.

If the US ratified and implemented Kyoto on the `Low` pathway (which didn’t happen), 2020 emissions would be 4,031 MMT (467 MMT less than EPA; 1445 MMT less than EIA) and 2050 emissions would be 2,520 MMT (no comparison with EPA so far).  If the US implemented the `High` pathway, 2020 emissions would be 3,527 MMT (971 MMT less than EPA!; 1,949 MMT less than EIA!) and 2050 emissions would be drastically slashed to 1,008 MMT!

Since we didn’t implement the Kyoto Protocol, we will not even attain 2020 `Kyoto Low` emissions in 2030.  Look at the graph again.  Connect the last blue diamond to the first green triangle.  Even though they’re the closest together, you can immediately see we have a lot of work to do to achieve even the EPA’s reduced emissions target.  Here is some additional context: to keep 2100 global mean temperatures <2C, we have to achieve the lowest emissions pathway modeled by the IPCC for the Fifth Assessment Report (see blue line below):

 photo CO2_Emissions_AR5_Obs_Nature_article_zps1e766d71.jpg

Note the comment at the bottom of the graph: global CO2 emissions have to turn negative by 2070, following decades of declines.  How will global emissions decline and turn negative if the US emits >3,000 MMT annually in 2050?  The short answer is easy: they won’t.  I want to combine my messages so far in this post: we have an enormous amount of work to reduce emissions to the EPA level.  That level is well below Kyoto’s Low level, which would have required a lot of work in today’s historical terms.  That work now lies in front of us if we really want to avoid >2C warming and other effects.  I maintain that we will not reduce emissions commensurate with <2C warming.  I think we will emit enough CO2 that our future will be along the RCP6.0 to RCP8.5 pathways seen above, or 3-5C warming and related effects.

Another important detail: the EPA’s proposed rule has a one-year comment period which will result in a final rule.  States then have another year to implement individual plans to achieve their reductions (a good idea).  The downside: the rule won’t go into effect until 2016 – only four years before the first goal.  What happens if the first goal isn’t achieved?  Will future EPA administrators reset the 2030 goal so it is more achievable (i.e., higher emissions)?  Will lawsuits prevent rule implementation for years?  There are many potential setbacks for implementing this rule.  And it doesn’t achieve <2C warming, not even close.


1 Comment

2014 US National Climate Assessment Released

The US Global Change Research Program issued its latest National Climate Assessment today. There are lots of goodies in it.  I want to focus on a couple of things that caught my eye in an initial skim.

Impacts will increase in frequency and severity (no big surprise there). This assessment includes up-t0-date research results on those impacts.  Like most reports, they leave `Responses` as a final category.  I understand the logic of laying out the evidence of climate change and its impacts prior to discussing solutions, but as I’ve written before today, people primarily respond to solutions and not problems.  Only the most dedicated readers will make it all the way through the report to get to the Response section.  My worry is that the Response section will not be the focus of activists’ attention; a continuation of decades of wasted energy.

Extreme Weather

The report summarizes the state-of-the-science well: “Over the last 50 years, much of the U.S. has seen increases in prolonged periods of excessively high temperatures, heavy downpours, and in some regions, severe floods and droughts.”  That is accurate.  I do not think one example is valid, however.  The report discusses anomalous warmth and dryness in Texas and Oklahoma in 2011.  I do not argue that the event occurred; I blogged about it and the subsequent 2012 Great Plains drought.  Where I deviate from the Assessment is this: there is scant evidence that the 2011 Southern Plains drought had a strong climate signal.  The same goes for the 2012 Great Plains drought.  Instead, these droughts were strongly linked to drier summertime conditions during the recent decade as part of a regime shift, most probably due to natural decadal variability (Hoerling et al. 2014).  The 2011 Texas heat wave was more likely to occur than it was 40 years ago.  This is not the same thing as identifying a clear attribution – something that remains at the cutting edge of climate science.

Likewise, the largest determinant of Atlantic hurricanes remains natural variability.  The Assessment’s statement that Atlantic hurricane activity increased since the early 1980s is true, but there are important details to consider.  The Atlantic signal is opposite the global signal (a small reduction in overall hurricane activity in that same time period), so regional effects are important to consider.  The Atlantic Multidecadal Oscillation is currently in a positive phase (since the early 1980s – isn’t that interesting?), which includes a warmer than usual Atlantic Ocean.  All else equal, this facilitates tropical storm development, which we’ve seen.

The Assessment’s conclusion stands in direct contrast to a couple of peer-reviewed papers, including Chylek and Lesins 2008 (we find no increase in the number of major hurricanes (category 3–5); If there is an increase in hurricane activity connected to a greenhouse gas induced global warming, it is currently obscured by the 60 year quasi-periodic cycle.) and Enfield and Cid-Serrano 2009 (Projections to the year 2025 show that the cumulative change in summer warm pool size since 1975 will depend critically on whether a subsequent cooling in the multidecadal cycle occurs, comparable to the warming between 1975 and 2000 AD.)  In other words, determining how man-made warming affects Atlantic hurricanes will not be detectable from the natural signal for many years to come.

That doesn’t mean we do nothing.  To the contrary, I argue that we need to adapt our current infrastructure to our current climate.  Multi-billion dollar events occur today.  Most of that is related to increases in population and wealth, as the Assessment reports.  We can lessen impacts by hardening our infrastructure (taking the likeliest climate effects into account) today while simultaneously mitigating future climate effects.  One should not happen without the other, but at a minimum, we need to adapt to today’s climate while recognizing tomorrow’s climate will be different.

Southwest

I want to cite the impacts the Assessment identifies for the Southwest, which includes California, Nevada, Utah, Colorado, New Mexico, and Arizona.  This region is the hottest and driest of the US.  They include: “increased heat, drought, insect outbreaks, and wildfires.  Declining water supplies, reduced agricultural yields, health impacts in cities due to heat, and flooding and erosion in coastal areas are additional concerns.”

Key messages:

  • Reduced snowpack and streamflow
  • Agricultural threats
  • Increased wildfire
  • Sea level rise
  • Heat threats to health

Southwest Responses

I really want to highlight one of the responses.  Without having read through all the responses carefully, I want to point out that I hope other responses are better than this one.  The selected response shows one scenario that could theoretically achieve 80% GHG reductions from 1990 levels by 2050:

 photo SW_energy-generation-by-2045_12447_v10-hi_0_zps2c73bc2c.jpg

I’ll discuss Colorado here; the Assessment included references to exhaustive reports for California, which I’ll cover in the future.

The latest data for Colorado’s net generation shares (2012) demonstrate the immense challenge confronting the scenario shown above.  Broken down by percentage: coal (64.3%), natural gas (20.1%), wind (11.2%), hydroelectric (3.7%), solar (0.3%), biomass and other (0.1% each).  The scenario above (still trying to pin down units) shows that wind can become the dominant source of electricity generation.  In principle, I agree.  But wind would have to switch places with coal as the dominant generation type by 2050 to achieve 80% GHG reductions.  Wind has penetrated the electricity generation market, which I fought for and applaud.  But it still trails natural gas (1/2 the generation) and significantly trails coal (1/5 the generation).  Changing those ratios requires a policy upheaval which I don’t think is likely.  Renewables will eventually supplant fossil fuels as primary generation technologies.  At this time, I don’t think it will happen in Colorado or anywhere else (California has an outside shot) by 2050.

Conclusion

This Assessment is useful for academics and activists, but is probably not useful for the general public.  A brief review of the Response section didn’t convince me that the writers and editors had the public as their primary audience.  I’ve seen Twitter explode today with comments regarding how people were at the forefront of this report, how actionable the information is, etc.  I’m not convinced yet.  Hopefully that will change.


Leave a comment

Climate News & Opinion Links – March 26 2014

I’ve collected a number of interesting climate and energy related news releases, stories, and opinion pieces in the past couple of weeks.  In no particular order:

The only way we will take large-scale climate action is if there are appropriate price signals in markets – signals that reach individual actors and influence their activities.  One step in the right direction was phasing out federal subsidies for high-risk coastal properties’ flood insurance policies, as Congress did in 2012.  This had the expected effect of increasing premiums for policy holders.  Unsurprisingly, people don’t want to pay more to live in their high-risk homes.  So they complained to their representatives, who responded by passing new legislation … reinstating government subsidies.  Taxpayers across the country are shoveling good money after bad for a select handful of wealthy people to build without mitigating risk to their homes or paying the true economic costs of their lifestyle decisions.  We will pay for them to rebuild again and again (remember: sea levels will rise for centuries) unless we as a society decide to stop.

Tesla is entering the energy industry.  This could be a game changer in terms of home solar energy and electric vehicles, no matter how Tesla comes out in the long-term.

20 years of IPCC effort and “achievement”.  With no robust international climate agreement after 20 years’ of work, I have a hard time accepting the claim the IPCC has achieved much of anything except an excessive bureaucracy and huge reports that few people read.

News that’s not really news: Asia will be among those hardest hit by climate change.  This isn’t a new result, but something that the IPCC’s WGII report will report on with increased confidence in 2014 versus 2007 (see above statement).  The number of people living close to coasts in Asia dwarf the total population of countries who historically emitted the most greenhouse gases.  That was true in 2007 and will be true in the future.  It will take a generation or more before effects on developed nations generate widespread action.

New research (subs. req’d) indicates ice gains in Antarctica’s Ross Sea will reverse by 2050.  Recent temperature and wind current patterns will shift from their current state to one that encourages rapid ice melt, similar to what the Arctic experienced in the past 20 years or so.

An El Nino might be developing in the tropical Pacific.  The anomalous heat content traveling east via an Equatorial Kelvin Wave rivals that of the 1997-1998 El Nino, which was the strongest in recorded history.  Earlier this month, NOAA’s Climate Prediction Center issued an El Nino Watch, citing a 50% probability that an El Nino would develop in summer or fall 2014, based in part on projections such as Columbia University’s.  El Nino is the warm phase of the ENSO phenomenon.  Warm ocean waters move from the western to eastern Pacific, affecting global atmospheric circulations.  Related to science policy, one result of Congress’ austerity approach to the economy is  monitoring buoys’ degradation in the Pacific Ocean.  NOAA helped deploy a widespread network of buoys following the 1982-1983 El Nino which helped track the progress of the 1997-1998 El Nino with greatly improved fidelity.  That network is operating at less than 75% of its designed capacity, hampering observations.  If we can’t observe these impactful events, we can’t forecast their effects.  This negatively impacts business’ and peoples’ bottom line.

Finally, I want to make some observations regarding goings-on within the climate activist community.  Vocal critics recently spent a lot of energy on hit pieces, this being only one example (poorly written with little on science, heavy on “he-saids”, with an overdose of personal insults and vindictive responses to anyone who didn’t agree with the piece, including my comments).  These writings demonstrate something rather simple to me: if you do not agree with 100% of what the activist consensus is, you’re no better than people the activists label ‘deniers’.  Additionally, the their argument is absurd: social scientists have no business analyzing climate data or commenting on activist’s claims.  Why is this absurd?  Because they simultaneously hold the contradictory belief that physical scientists should have exclusive input and decision-making power over climate policy (a social creation).  Furthermore, implicit in their messaging is social scientists don’t have the right kind of expertise to participate in “serious” discussions.  These efforts to deligitimize someone they don’t believe should participate (how very elitist of them) is reminiscent of efforts by many in the Republican party to deligitimize Barack Obama’s presidency simply because of his race.  Nothing is gained and much is lost by these efforts.  How does this advance the climate discussion to people not currently involved, which will need to happen if we are to ever take any kind of large-scale climate action?

Additional lack of critical thought is found in this post, mostly in this penultimate paragraph:

I’ve said before that I think people can believe what they want, as long as they don’t try to act on those beliefs in a way that interferes with others’ lives. When they deny the reality of global warming, and preach it to their flock, that’s exactly what they’re doing (incidentally, a large fraction of Americans believe to some extent the Bible is literally true).

The very same complaint is made by the people the author derides in this paragraph and post but in reverse and it’s one of the biggest reasons why we’ve taken so little climate action.  The author’s condescension is plainly evident for those who don’t believe exactly as he does. Instead of trying to reach out to people with different beliefs (and underlying value systems), he takes the lazy route and spends time insulting them.  Have you ever believed in something you didn’t previously after someone insulted you?  No, it’s an absurd and self-defeating strategy.  These basic problems underlie most climate change discussions and people retrench their positions instead of trying to step into other’s shoes.  I’m not sure how much this has to change before we undertake more widespread and effective climate mitigation strategies.


Leave a comment

Newest Climate Change Consensus Document Won’t Matter…

It won’t matter unless and until physical scientists leverage expertise outside of their silos and stop executing failed strategies.  In addition to summary after summary of government sanctioned peer-reviewed scientific conclusions, scientists now think they need to report on the perceived consensus on individual bases of those conclusions in order to spur the public to action.  Regardless of their personal political leanings, scientists are very conservative job actors.  They have long-held traditions that are upheld at every turn, which reduces the urgency of their statements.  As an analogy, think of a bunch of people sitting down who think for long time periods before any action is ever taken.  First, they calmly say there is a situation that requires near-immediate action.  Then they say it a little louder.  Then a handful start yelling because you’re not responding to their carefully crafted words and they think that you just didn’t hear them or you just aren’t smart enough to understand those carefully crafted words.  Then they start screaming because they’re convinced you’re an idiot and screaming will definitely work where yelling and saying those words didn’t work before.

Well, the screaming isn’t helping, is it?  You’re not an idiot.  The volume of words isn’t the issue.  The issue is you are motivated by things outside of the climate realm – things like having a job; a job that pays a living wage so you can pay for your mortgage and car payment and keep your children educated and happy.  An existence in an affluent world that allows you the time and energy to think of complex problems beyond your perceived immediate needs.  If those needs aren’t met – if you have insecure affluence – you place climate change and the environment far down on a list of priorities – just like a majority of other Americans.

But the newly released “American Association for the Advancement of Science, the world’s largest general scientific society with a membership of 121,200 scientists and “science supporters” globally” report won’t change this dynamic.  While it is important that the AAAS engages scientists and the society it serves, this report is unfortunately just the latest effort by a group of physical scientists that ignores science results outside of their discipline to try to convince Americans that immediate and drastic action is necessary.  Like previous efforts, this one will not spur people to action, mostly because the actions listed are about limits, stopping, restricting, reversing, preventing, and regulating.  The conceptual model from which these words arise works in direct contrast to the fundamentals of American culture.  We are a people who are imaginative, who innovate, who invest.

As I have written before, there is no way we will achieve greenhouse gas emissions reductions without substantial investment into innovation of new technologies that we research, develop, and deploy at scale.  There is nothing limiting or restrictive about this framework.  It it the opposite of those things.  This framework recognizes and sets out to achieve opportunities; it allows for personal and cultural growth; it is in sync with the underlying cultural fabric of this country.  It directly addresses people’s perception of the security of their affluence in the same way that developing countries’ economic growth allows people to move beyond basic material needs to higher order needs.

The reality of insecure affluence among many Americans today might be an indirect outcome of the 1%’s efforts to increase wealth disparity, but it is real.  We have to address that disparity first in order to address the real, valid perceptions of insecure affluence.  Only after Americans feel their personal wealth is secure will they have the resources to devote to higher order needs such as global climate change.  That can happen with concerted focus on investing and innovating a post-carbon economy.  But you won’t see that at the top of any policy prescription from the majority of climate scientists.


1 Comment

Future Emissions Scenario Requirements Part II

Ask and ye shall receive.  I recently wrote about what future GHG emissions scenarios included in terms of emission reduction requirements.  I have maintained for some time now that most of the IPCC’s emission and concentration scenarios are essentially useless for practical planning purposes.  Sure, they’re interesting academically, but we climate scientists can’t just study something for the sake of studying it in today’s tight federal budget environment.

In that post, I showed some graphics from a 2013 Nature paper which combined historical emissions as well as projected emissions.  Due to the article’s age, I had to search for additional data which showed more recent emissions.  I also showed a simple calculation of projected emissions assuming constant 2.1% annual emissions growth and how different emissions growth would have to be in order to achieve an emissions scenario many scientists characterize as ‘doable’: RCP4.5.

Well, a new Nature Climate Change paper (26Feb2014) updates the 2013 graph I showed, with some small changes:

 photo CO2_Emissions_AR5_Obs_Nature_article_zps1e766d71.jpg
Figure 1. Historical (black dots) and projected CO2 emissions from a Nature Climate Change article (subs. req’d).  Bold colored lines (red (RCP8.5), yellow (RCP4.5), green (RCP6), and blue (RCP2.6)) represent IPCC AR5 RCP-related emission scenarios.

Note that this figure shows exactly what I wrote about in my earlier post: historical emissions are tracking at or above the RCP8.5 scenario.  They also exceed the other three scenarios so far in the early 21st century.  These differences are relatively small so far (they will grow with time), but the trend difference between historical and RCP2.6 is already important.  As the figure shows, if we wanted to match RCP2.6 (and keep 2100 global mean annual temperatures near 2C above pre-industrial), emissions would have to be declining for multiple years already.  They aren’t.  Our actual annual emissions already exceed the annual maximum assumed by RCP2.6.  If we were to match RCP2.6 at some time in the future, emission reductions would have to be larger than RCP2.6 assumes, which is currently technologically impossible.

The figure also shows that if we continue at or along the RCP8.5 pathway, we will exceed the 2°C policy target by approximately 2046.  The paper begins with this short and sweet abstract:

It is time to acknowledge that global average temperatures are likely to rise above the 2 °C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

And it includes this well-written paragraph:

This global temperature target has brought a valuable focus to international climate negotiations, motivating commitment to emissions reductions from several nations. But a policy narrative that continues to frame this target as the sole metric of success or failure to constrain climate change risk is now itself becoming dangerous, because it ill-prepares society to confront and manage the risks of a world that is increasingly likely to experience warming well in excess of 2°C this century.

I wouldn’t have used the term `dangerous` because it conveys a judgmental aspect to an objective statement.  But that’s personal style.  I agree completely with the underlying message.  If we have a small (I would say nearly zero) chance of keeping warming below 2°C this century, then 2°C shouldn’t be the target.  We can make an infinite number of possible targets, but most of them will be unachievable.  How much effort should we put into such targets?  How supportive of additional climate policies will the public be if initial targets fail early?  These aren’t simply academic questions.  Many climate activists think they’re convinced of how important action is, but their rhetoric doesn’t support that conviction.  They’re more ideological than they’d care to admit.

I met someone at a talk at the University of Colorado on Monday and ended up having lunch with them to exchange economic information for climate information.  I tried to convince them of the need to switch targets now, to no avail.  I ran into a basic problem of climate communication.  This person has a worldview and I was in the unenviable position of trying to modify that worldview.  Just as many climate communicators try to do with climate skeptics.  It’s incredibly difficult to do this because you’re dealing with a lifetime of information and experience overlaying a biology that is predisposed to that very worldview.

I will continue to post about historical versus projected emission/concentration pathways.  If activists really are supportive of the objective science as they claim, I think they will eventually shift their target.  They will of course have to come to terms with what they will initially perceive as a failure.  But the faster they can do that, the sooner we can set more reasonable and achievable targets and start making headway towards mitigation.

Follow

Get every new post delivered to your Inbox.

Join 290 other followers