Weatherdem's Weblog

Bridging climate science, citizens, and policy


Leave a comment

More Discussion on Warming “Hiatus”

After a lengthy absence during which I studied for the most challenging mental exercise I’ve ever faced – departmental Comprehensive Exams – I’m going to kick off 2014 with another discussion about the early 21-century warming “hiatus”.  There is good reason for this: the climate is complex and understanding the individual parts remains as active research, to say nothing of how those parts interact, which adds complexity upon complexity.  It also gets me back in the swing of writing again.

The motivation for this piece is a new paper, “An apparent hiatus in global warming?”.  Here are important parts of the abstract (you can read the entire abstract at the link):

Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s.  Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5–1 W m−2 over the 2000s. [...] An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976–1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

Some important notes here.  Greenhouse gases consistently increased during the 20th century, with increasing rates in recent decades.  But how do those GHGs affect the climate?  They emit radiation back towards the Earth’s surface, but it takes time for that radiation to manifest as detectable heat.  It’s a slowly accumulating effect, which other processes and phenomena influence.  To be more specific, the Earth’s surface temperature (land and ocean) shows the effect of that slow accumulation decades later.  This decade’s surface temperatures are largely the result of GHG concentrations from 20-30 years ago.  Which means that today’s concentrations will largely affect surface temperatures 20+ years from now, not today.

Let’s take a look at one of the study’s graph’s – global mean surface temperature anomalies from 1850-2012.

 photo GlobalMeanTemperature-TrenberthampFasullo2014_zps15374d73.jpg

Figure 1. Global mean surface temperature anomaly (1850-2012; Trenberth & Fasullo) as observed by the four most used datasets.

After a rapid rise in the 2nd half of the 20th century, it does indeed appear as though warming has paused since 2000.  But I just wrote that GHG concentrations increased throughout the 20th century and into the 21st.  So why does the “pause” appear in the temperature record?  Because of other climate processes, in this case natural processes that I’ve also written about (see here and here).

 photo Global12-monthrunningmeansurfaceTanomaly-TrenberthampFasullo20140113_zps3f9a0298.jpg

Figure 2.  Global mean surface temperature anomaly (12-month running mean) with El Nino (orange) and La Nina (blue) events highlighted.

Figure 2 shows how the biggest high-frequency climate oscillation impacts global mean surface temperature anomalies.  Following the record-setting 1997-1998 El Niño, annual temperature anomalies stayed primarily within +0.6 to +0.7C.  The paper hypothesizes that the 97-98 El Niño initiated a change in longer-term oscillations – namely the Pacific Decadal Oscillation (related to the Interdecadal Pacific Oscillation, which impacts my own research).

 photo PDOIndex1950-2013TrenberthampF20140113_zpse6e432fa.jpg

Figure 3. Time series of Pacific Decadal Oscillation Index (1950-2013).

Phases characterize the index: warm (1977-1998) and cool (1948-1976 & 1999-current).  Look back at Figure 1 and the PDO’s effect on global mean surface temperature anomalies is clear: less warming is present during the cool phases and more warming during the warm phase.  Now, this analysis is limited by the relatively short observational period, but researchers are teasing out PDO effects from paleoclimatic studies going back hundreds of years.  The PDO’s cool phase is characterized by cooler than normal eastern Pacific sea surface temperatures.  Averaged out over 10-30 years, the cool phase looks remarkably similar to La Nina.  Conversely for the warm phase, the eastern Pacific is much warmer than normal and resembles a long-term El Niño.

Now for some complexity.  The short-lived El Niño/La Niña events occur on top of the PDO signal.  So the Earth can have a long-term cool phase (negative PDO) and have both warm and cool ENSO phases (El Niño/La Niña) on annual to interannual timescales.  Look at Figure 2 again to see the additive impacts.  The 1997-98 El Niño occurred at the end of the last PDO warm phase, but also during a warming trend whose timescale exceeds the PDO’s (anthropogenic climate change).  Four recent La Niñas occurred during the current negative (cool) PDO phase within the past 10 years (see Figure 2).  Is it any wonder then that global mean surface temperatures haven’t risen at the same rate they did during the 1977-1998 period?

So what does this mean going forward?  First of all, I disagree with the 2nd half of Trenberth’s statement: “This year or later, it’s possible that El Niño will occur again in the Pacific. Will that trigger another change in the PDO, that in turn could trigger a resurgence in global surface temperature warming? Only time will tell, Trenberth explained.”  Given the historical PDO record, I seriously doubt the next El Niño will switch the PDO phase back to positive (warm).  The PDO has been in its current negative phase for only 14 years or so now.  It’s more likely that this negative phase will continue for at least the next 5 years.  I wouldn’t be surprised if it continued for the next 10-15 years.  Which doesn’t mean global temperatures won’t rise; it means they would likely rise at a slower rate than they did during the late 20th century.  When the next PDO positive phase occurs, global temperatures will likely show that shift by increasing at a faster rate than during the past 15 years.

Lastly, just because the Earth’s surface hasn’t warmed quite as much as expected in the past 10-15 years doesn’t mean the heat disappeared.  What you heard as a kid was true: energy cannot be destroyed, only changed.  The heat energy emitted by GHGs during the past 30 years went to a place humans don’t measure very well or very much: the deep ocean, as this graph shows:

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 4.  Anomalous ocean heat energy locations since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

This graph shows that during the global warming “pause” period (1999-current), the ocean below 700m absorbed the majority of the heat of the entire ocean system.  You can also quite clearly see the anomalous heat content of recent years.  This increased oceanic heat content will manifest itself in upcoming decades and centuries.  Sea levels will rise because warmer substances occupy more volume than cooler substances.  That effect alone threatens the majority of the Earth’s human population.  It also threatens frozen water reservoirs: the globe’s ice caps.  As they melt at an increasing rate throughout this century, global sea levels will rise even further.  As warmer deep ocean water returns to the surface and interacts with a warmer atmosphere which can hold more moisture and therefore heat, the heat will eventually transfer to the atmosphere where we can more regularly measure it.  So aside from the natural climate oscillations discussed above (ENSO & PDO), much of this heat will affect us at some point.

Will we be ready for those impacts?  Contemporary examples suggest no, but municipalities are taking already visible threats more seriously every day.  Those local efforts will guide actions at higher levels of government and society.


1 Comment

NASA & NOAA: August 2013 4th Warmest Globally On Record

According to data released by NASA and NOAA this month, August was the 4th warmest August globally on record.  Here are the data for NASA’s analysis; here are NOAA data and report.  The two agencies have different analysis techniques, which in this case resulted in different temperature anomaly values but the same overall rankings within their respective data sets.  The analyses result in different rankings in most months.  The two techniques do provide a check on one another and confidence for us that their results are robust.  At the beginning, I will remind readers that the month-to-month and year-to-year values and rankings matter less than the long-term climatic warming.  Monthly and yearly conditions changes primarily by the weather, which is not climate.

The details:

August’s global average temperature was 0.62°C (1.12°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The past three months have a +0.58°C temperature anomaly.  And the latest 12-month period (Aug 2012 – Jul 2013) had a +0.59°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The 2010-2012 downturn was largely due to the latest La Niña event (see below for more) that ended early last summer.  Since then, ENSO conditions returned to a neutral state (neither La Niña nor El Niño).  Therefore, as previous anomalously cool months fall off the back of the running mean, and barring another La Niña, the 12-month temperature trace should track upward again throughout 2013.

 photo NASA-Temp_Analysis_20130831_zps3ff2a250.gif

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through August 2013 from NASA.

According to NOAA, April’s global average temperatures were 0.62°C (1.12°F) above the 20th century average of 15.6°C (60.1°F).  NOAA’s global temperature anomaly map for August (duplicated below) shows where conditions were warmer and cooler than average during the month.

 photo NOAA-Temp_Analysis_201308_zpsf2f24a41.gif

Figure 2. Global temperature anomaly map for August 2013 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

 photo NinoSSTAnom20130924_zps74ba969c.gif

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

The last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, tropical Pacific sea-surface temperatures peaked at +0.8 (y-axis) in September 2012.  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  Recent ENSO events occurred at the same time that the Interdecadal Pacific Oscillation entered its most recent negative phase.  This phase acts like a La Niña, but its influence is smaller than La Niña.  So natural, low-frequency climate oscillations affect the globe’s temperatures.  Underlying these oscillations is the background warming caused by humans, which we detect by looking at long-term anomalies.  Despite these recent cooling influences, temperatures were still top-10 warmest for a calendar year (2012) and during individual months, including August 2013.

Skeptics have pointed out that warming has “stopped” or “slowed considerably” in recent years, which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: since an energy imbalance exists (less energy is leaving the Earth than the Earth is receiving; this is due to atmospheric greenhouse gases) and the surface temperature rise has seemingly stalled, the excess energy is going somewhere.  The heat has to be going somewhere – energy doesn’t just disappear.  That somewhere is likely the oceans, and specifically the deep ocean (see figure below).  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising in part because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as introduce additional water vapor due to the warmer atmosphere.  Thus, the immediate warming rate might have slowed down, but we have locked in future warming (higher future warming rate).

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 4. New research that shows anomalous ocean heat energy locations since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

Paying for recovery from seemingly localized severe weather and climate events is and always will be more expensive than paying to increase resilience from those events.  As drought continues to impact the US, as Arctic ice continues its long-term melt, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how many costs we subject ourselves to.  As President Obama begins his second term with climate change “a priority”, he tosses aside the most effective tool available and most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.

But be forewarned: even if we take action today, we will still see more warmest-ever La Niña years, more warmest-ever El Niño years, more drought, higher sea levels, increased ocean acidification, more plant stress, and more ecosystem stress.  The biggest difference between efforts in the 1980s and 1990s to scrub sulfur and CFC emissions and future efforts to reduce CO2 emissions is this: the first two yielded an almost immediate result.  It will take decades to centuries before CO2 emission reductions produce tangible results humans can see.  That is part of what makes climate change such a wicked problem.


Leave a comment

NASA & NOAA: April 2013 13th Warmest Globally On Record

According to data released by NASA and NOAA last week, April was the 13th warmest April globally on record.  Here are the data for  NASA’s analysis; here are NOAA data and report.  The two agencies have slightly different analysis techniques, which in this case resulted in different temperature anomaly values but the same overall rankings.  Most months, the analyses result in different rankings.  The two techniques do provide a check on one another and confidence for us that their results are robust.

The details:

April’s global average temperatures were 0.50°C (0.9°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The past three months have a +0.53°C temperature anomaly.  And the latest 12-month period (Apr 2012 – Mar 2013) had a +0.59°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The 2010-2012 downturn was largely due to the latest La Niña event (see below for more) that ended early last summer.  Since then, ENSO conditions returned to a neutral state (neither La Niña nor El Niñ0).  Therefore, as previous anomalously cool months fall off the back of the running mean, and barring another La Niña, the 12-month temperature trace should track upward again throughout 2013.

 photo NASA-Temp_Analysis_20130430_zpsd93c9d48.gif

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through April 2013 from NASA.

According to NOAA, April’s global average temperatures were 0.52°C (0.94°F) above the 20th century mean of 13.7°C (56.7°F).  NOAA’s global temperature anomaly map for April (duplicated below) shows where conditions were warmer and cooler than average during the month.

 photo NOAA-Temp_Analysis_201304_zps204a8f35.gif

Figure 2. Global temperature anomaly map for January 2013 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

Both analyses show much cooler than normal conditions over most of North America, Europe, and northeast Asia.  As I’ve discussed elsewhere, this is in response to the abnormal jet stream.  Large, unmoving high pressure centers blocked the jet stream at different locations in the Northern Hemisphere multiple times this winter and spring.  The jet stream therefore assumed a high amplitude pattern where the trough and ridge axes were tens of degrees of latitude apart from one another.  When this happens, very cold air is pulled southward and warm air is pulled northward (look at central Eurasia).  In April 2013, the specific position of the high pressure centers caused cold air to spill southward over land as opposed to over the oceans.  These cold air outbreaks were an advantage for the US in that severe storms were unable to form.  This situation obviously broke down in the past couple of weeks and we have correspondingly seen devastating severe weather outbreaks across the south-central US.

During the second half of last year, a ENSO-neutral state (neither El Niño nor La Niña) began, which continues to this day:

 photo NinoSSTAnom20130501_zpsf742a7c0.gif

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

The last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, tropical Pacific sea-surface temperatures peaked at +0.8 (y-axis) in September 2012.  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  So a natural, low-frequency climate oscillation affected the globe’s temperatures during the past couple of years.  Underlying that oscillation is the background warming caused by humans.  And yet temperatures were still in the top-10 warmest for a calendar year (2012) and individual months, including through March 2013, in recorded history.  We ascribe a certain status to top-10 events.  April 2013 obviously missed the top-10 threshold, but it remains close to that level of anomalous warmth.  However, the difference in temperature magnitude between the 10th and 13th warmest Aprils is measured in tenths of a degree.

Skeptics have pointed out that warming has “stopped” or “slowed considerably” in recent years, which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: since an energy imbalance exists (less outgoing energy than incoming energy due to atmospheric greenhouse gases) and the surface temperature rise has seemingly stalled, the excess energy is going somewhere.  That somewhere is likely the oceans, and specifically the deep ocean (see figure below).  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising in part because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as introduce additional water vapor due to the warmer atmosphere.  Thus, the immediate warming rate might have slowed down, but we have locked in future warming (higher future warming rate).

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 4. New research that shows anomalous ocean heat energy locations since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

Paying for recovery from seemingly localized severe weather and climate events is and always will be more expensive than paying to increase resilience from those events.  As drought continues to impact US agriculture, as Arctic ice continues to melt to new record lows, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how many costs we subject ourselves to.  As President Obama begins his second term with climate change “a priority”, he tosses aside the most effective tool available and most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.  But be forewarned: even if we take action today, we will still see more warmest-ever La Niña years, more warmest-ever El Niño years, more drought, higher sea levels, increased ocean acidification, more plant stress, and more ecosystem stress.  The biggest difference between efforts in the 1980s and 1990s to scrub sulfur and CFC emissions and future efforts to reduce CO2 emissions is this: the first two yielded an almost immediate result while it will take decades to centuries before CO2 emission reductions produce tangible results humans can see.  That is part of what makes climate change such a wicked problem.


2 Comments

NASA & NOAA: March 2013 9th, 10th Warmest Globally On Record

According to data released by NOAA, March was the 10th warmest globally on record.  Here are the NOAA data and report.  NASA also released their suite of graphics, but their surface temperature data page is down today, so I cannot relay how NASA’s March temperature compares to historical Marches.  Once their site is back up, I will update this post.  [Update: NASA's analysis resulted in their 9th warmest March on record.  Here are the data for  NASA’s analysis.] The two agencies have slightly different analysis techniques, which in this case resulted in not only different temperature anomaly values but somewhat different rankings as well.  The two techniques provide a check on one another and confidence for us.

The details:

March’s global average temperatures were 0.59°C (1.062°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The past three months have a +0.57°C temperature anomaly.  And the latest 12-month period (Apr 2012 – Mar 2013) had a +0.60°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The recent downturn (2010-2012) was largely due to the latest La Niña event (see below for more) that ended early last summer.  Since then, ENSO conditions returned to a neutral state (neither La Niña nor El Niñ0).  Therefore, as previous anomalously cool months fall off the back of the running mean, and barring another La Niña, the 12-month temperature trace should track upward again throughout 2013.

 photo NASA-Temp_Analysis_20130331_zps2e2b340a.gif

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through March 2013 from NASA.

According to NOAA, March’s global average temperatures were 0.58°C (1.044°F) above the 20th century mean of 12.7°C (54.9°F).  NOAA’s global temperature anomaly map for March (duplicated below) shows where conditions were warmer than average during the month.

 photo GlobalTemperatureAnomalyMap201303_zpsf432fd9b.gif

Figure 2. Global temperature anomaly map for March 2013 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite small differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

The very warm conditions found over Greenland are a concern.  Greenland was warmer than average during more months in recent history than not.  In contrast to 2012, northern Eurasian temperatures were much cooler than normal.  This is likely a temporary, seasonal effect.  Long-term temperatures over much of this region continue to rise at among the fastest rate for any region on Earth.

The NASA and NOAA surface temperature maps correlate well with the 500-mb height pressure anomalies, as seen in this graph:

 photo NOAA500hPaanomalymap201303_zps6d024aed.gif

Figure 3. 500-mb heights (white contours) and anomalies (m; color contours) during March 2013.

Note the correspondence between the height map and the NASA & NOAA surface temperature maps: lower heights (negative height anomalies) present over the North Atlantic and northern Eurasia overlay the cold surface temperature anomalies at the surface.  Similarly, warm surface temperature anomalies are located under the positive 500-mb height anomalies.

These temperature observations are of interest for the following reason: the globe came out of a moderate La Niña event in the first half of last year.  During the second half of the 2012 and the first part of 2013, we remained in a ENSO-neutral state (neither El Niño nor La Niña):

 photo NinoSSTAnom20130401_zpsf59ac6f7.gif

Figure 4. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

The last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, tropical Pacific sea-surface temperatures peaked at +0.8 (y-axis) in September 2012.  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  So a natural, low-frequency climate oscillation affected the globe’s temperatures during the past couple of years.  Underlying that oscillation is the background warming caused by humans.  And yet temperatures were still in the top-10 warmest for a calendar year (2012) and individual months, including March 2013, in recorded history.

Skeptics have pointed out that warming has “stopped” in recent years (by comparing recent temperatures to the 1998 maximum which was heavily influenced by a strong El Niño even), which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: a global annual energy imbalance exists (less outgoing energy than incoming energy).  If the surface temperature rise has seemingly stalled, the excess energy is going somewhere.  That somewhere is likely the oceans, and specifically the deep ocean (see the figures below).  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising in part because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as introduce additional water vapor.  Thus, the short-term warming rate might have slowed down, but we have locked in future warming (higher future warming rate) as well as future climate effects.

 photo Total-Heat-Content.gif

Figure 5. Total global heat content anomaly from 1950-2004. An overwhelming majority of energy went to the global oceans.

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 6. New research that shows anomalous ocean heat energy location since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

Balmaseda et al.’s work demonstrates the transport of anomalous energy through the depth of the global oceans.  Note that the grey lines’ lack of significant change from 2004-2008 (upper 300m).  Observations of surface temperature include the very top part of this 300m layer.  Since the layer hasn’t changed much, neither have surface temperature readings.  Note the rapid increase in heat content within the top 700m.  Given the lack of increase in the top 300m, the 300-700m layer heat content must have increased.  By the same logic, the rapid growth in heat content throughout the depth of the ocean, which did not stall post-2004, provides evidence for anomalous heat location.  You can also see the impact of major volcanic eruptions on ocean heat content: less incoming solar radiation means less absorbed heat.

A significant question for climate scientists is this: are climate models capable of picking up this heat anomaly signal and do they show a similar trend?  If they aren’t, then their projections of surface temperature change is likely to be incorrect since the heat is warming the abyssal ocean and not the land and atmosphere in the 2000s and 2010s.  If they aren’t, climate policy is also impacted.  Instead of warmer surface temperatures (and effects on drought, agriculture, and health to name just a few), anomalous ocean heat content will impact coastal communities more than previously thought.  Consider the implications of that in addition to the AR4′s lack of consideration of land-based ice melt: sea level projections could be too conservative.

That said, it is also a fair question to ask whether today’s climate policies are sufficient for today’s climate.  In many cases, I would say  they aren’t sufficient.  Paying for recovery from seemingly localized severe weather and climate events is and always will be more expensive than paying to increase resilience from those events.  As drought continues to impact US agriculture, as Arctic ice continues to melt to new record lows, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how many costs we subject ourselves to.

As President Obama began his second term with climate change “a priority”, he tosses aside the most effective tool available and most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.  But be forewarned: even if we take action today, we will still see more warmest La Niña years, more warmest El Niño years, more drought, higher sea levels, increased ocean acidification, more plant stress, and more ecosystem stress.  The biggest difference between efforts in the 1980s and 1990s to scrub sulfur and CFC emissions and future efforts to reduce CO2 emissions is this: the first two yielded an almost immediate result while it will take decades before CO2 emission reductions produce tangible results humans can see.


Leave a comment

NASA & NOAA: January 2013 Was 6th, 9th Warmest Globally On Record

According to data released by NASA and NOAA last week, January was the 6th and 9th warmest January’s (respectively) globally on record.  Here are the data for  NASA’s analysis; here are NOAA data and report.  The two agencies have slightly different analysis techniques, which in this case resulted in not only different temperature anomaly values but somewhat different rankings as well.  The two techniques provide a check on one another and confidence for us.

The details:

January’s global average temperatures were 0.61°C (1.098°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The warmest regions on Earth coincide with the locations where climate models have been projecting the most warmth will occur: high latitudes (especially within the Arctic Circle).  The past three months have a +0.58°C temperature anomaly.  And the latest 12-month period (Feb 2012 – Jan 2013) had a +0.58°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The recent downturn (2010-2012) is largely due to the latest La Niña event (see below for more) that ended early last summer.  Since then, ENSO conditions returned to a neutral state (neither La Niña nor El Niñ0).  Therefore, as previous anomalously cool months fall off the back of the running mean, and barring another La Niña, the 12-month temperature trace should track upward again in 2013.

 photo NASA-Temp_Analysis_20130131_zpsdfcedaac.gif

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through January 2013 from NASA.

According to NOAA, January’s global average temperatures were 0.54°C (0.97°F) above the 20th century mean of 14.0°C (57.2°F).  NOAA’s global temperature anomaly map for January (duplicated below) shows where conditions were warmer than average during the month.

 photo GlobalTemperatureAnomalyMap201301_zps05956f2c.gif

Figure 2. Global temperature anomaly map for January 2013 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

The very warm conditions found over Greenland and Alaska are a concern.  These areas were warmer than average during more months in recent history than not.  Additionally, Australia was much warmer than usual.  Indeed, Australia’s January average temperature was the highest on record: +2.28°C (4.10°F!) above the 1961–1990 average, besting the previous record set in 1932 by 0.11°C (0.20°F).  In contrast to 2012, Siberian temperatures were cooler than normal.  This is likely a temporary, seasonal effect.  Long-term temperatures over northern Siberia continue to rise at among the fastest rate for any region on Earth.

These observations are also worrisome for the following reason: the globe came out of a moderate La Niña event in the first half of the year.  During the second half of the year, we remained in a ENSO-neutral state (neither El Niño nor La Niña):

 photo NinoSSTAnom20130301_zps06ef6b19.gif

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

The last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, tropical Pacific sea-surface temperatures peaked at +0.8 (y-axis) in September 2012.  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  So a natural, low-frequency climate oscillation affected the globe’s temperatures during the past couple of years.  Underlying that oscillation is the background warming caused by humans.  And yet temperatures were still in the top-10 warmest for a calendar year (2012) and individual months, including January 2013, in recorded history.

Skeptics have pointed out that warming has “stopped” or “slowed considerably” in recent years, which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: since an energy imbalance exists (less outgoing energy than incoming energy) and the surface temperature rise has seemingly stalled, the excess energy is going somewhere.  That somewhere is likely the oceans, and specifically the deep ocean.  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as additional water vapor.  Thus, the immediate warming rate might have slowed down, but we have locked in future warming (higher future warming rate).

In a previous post on global temperatures, I pointed a few things out and asked some questions.  The Conference of Parties summit produced no meaningful climate action (November 2012).  Countries agreed to have something on paper by 2015 and enacted by 2020.  If everything goes as planned (a huge assumption given the lack of historical progress), significant carbon reductions wouldn’t occur until later in the 2020s – too late to ensure <2°C warming by 2100.  If, as is much more likely, everything doesn’t go as planned, reductions wouldn’t occur until later than the 2020s.  Additional meetings are scheduled for this year, but I maintain my expectation that nothing meaningful will come from them.  The international process is ill-equipped to handle all the legitimate interest groups in one fell swoop.

Instead, actions that start locally and grow with time are more likely to address emissions and eventual warming and other climate change effects.  People started small-scale activities in cities around the world in recent years.  There are also regional and international carbon markets.  While most markets were poorly designed, lessons learned from the first generation can be used to make future generation markets more effective.  As these small-scale efforts grow and their effects combine, larger bodies will need to address differences between them so that they work for larger populations and markets.

Paying for recovery from seemingly localized severe weather and climate events is and always will be more expensive than paying to increase resilience from those events.  As drought continues to impact US agriculture, as Arctic ice continues to melt to new record lows, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how many costs we subject ourselves to.  As President Obama begins his second term with climate change “a priority”, he tosses aside the most effective tool available and most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.  But be forewarned: even if we take action today, we will still see more warmest La Niña years, more warmest El Niño years, more drought, higher sea levels, increased ocean acidification, more plant stress, and more ecosystem stress.  The biggest difference between efforts in the 1980s and 1990s to scrub sulfur and CFC emissions and future efforts to reduce CO2 emissions is this: the first two yielded an almost immediate result while it will take decades before CO2 emission reductions produce tangible results humans can see.


1 Comment

El Niño and La Niña Redefined

This is the week to publish lots of interesting events and articles apparently.  I have a number of things I would love to post about, but only so much time.  Here is one that relates directly to something I posted on earlier: warmest La Niña years.  Just a few short weeks after NOAA operations wrote that 2012′s La Niña was the warmest on records, NOAA researchers announced they recalculated historical La Niñas because of warming global temperatures.  NOAA confirmed something that occurred to me while I was writing that post: eventually, historical El Niños will be cooler than future La Niñas.  How then will we compare events across time as the climate evolves?  The answer is simple: redefine El Niño and La Niña.  Instead of one climate period of record, compare historical ENSO events to their contemporary climate.  In other words, “each five-year period in the historical record now has its own 30-year average centered on the first year in the period”: compare 1950-1955 to the 1936-1965 average climate; compare 1956-1960 to the 1941-1970 average.  This is different from the previous practice in which NOAA compared 1950-1955 to 1981-2010 and compared 2013 to 1981-2010.  The 1950-1955 period existed in a different enough climate that it cannot be equitably compared to the most recent climatological period.

 photo ENSO-Nino34-NOAA-Recalc-201302_zpsb3caed50.jpg

Figure 1. “The average monthly temperatures in the central tropical Pacific have been increasing. This graph shows the new 30-year averages that NOAA is using to calculate the relative strength of historic El Niño and La Niña events.”

I want to point out something on this graph.  Is long-term warming evident in this graph?  Yes, there is.  But note they plot the breakdown by month.  The difference between 1936-1965 and 1981-2010 in October is >1°F.  Meanwhile, the same difference in May is ~0.5°F.

Here is the effect of NOAA’s change:

 photo ENSO_comparison_NOAA_201302_zps74082d08.jpg

Figure 2.  3-month temperature anomalies in the Nino-3.4 region.   (Top) Characterization of ENSO using 1971-2000 data.  (Bottom) Same as top, but using 1981-2010 data.

NOAA’s updated methodology resulted in the identification of two new La Niñas: 2005-06 and 2008-09.  The reason is warmer temperatures in the most recent decade than the 1970s (it sounds obvious when you say it like that).  That warming masked La Niñas with the old methodology.  It also means that the 2012 La Niña is no longer the warmest La Niña, as I related from the National Climatic Data Center last month:

 photo NOAA-Temp_Anomalies_201301_zpsa1d00432.png

Figure 3. Anomalies of annual global temperature as measured by NOAA.  Blue bars represent La Niña years, red bars represent El Niño years, and gray bars represent ENSO-neutral years.

That record will now go down as a tie between 2006 and 2009, with 2012 coming in a close third.  This situation is analogous to the different methodologies that NOAA and NASA use to compute global temperatures and where they rank individual years.  Records might differ because of methodological differences, but the larger picture remains intact: the globe warmed in the 20th and so far in the 21st centuries.  That signal is apparent in many datasets.  Within the week, I’m sure we’ll hear from GW skeptics that La Niña years have been getting cooler since 2006.  Here is what is most important: 2000s La Niñas were warmer than 1990 Niñas, which were warmer than 1980 Niñas, etc.


1 Comment

NASA & NOAA: 2012 Was In Top-10 Warmest Years For Globe On Record

According to data released by NASA and NOAA this week, 2012 was the 9th and 10th warmest years (respectively) globally on record.  NASA’s analysis produced the 9th warmest year in its dataset; NOAA recorded the 10th warmest year in its dataset.  The two agencies have slightly different analysis techniques, which in this case resulted in not only different temperature anomaly values but somewhat different rankings as well.

The details:

2012’s global average temperature was +0.56°C (1°F) warmer than the 1951-1980 base period average (1951-1980), according to NASA, as the following graphic shows.  The warmest regions on Earth (by anomaly) were the Arctic and central North America.  The fall months have a +0.68°C temperature anomaly, which was the highest three-month anomaly in 2012 due to the absence of La Niña.  In contrast, Dec-Jan-Feb produced the lowest temperature anomaly of the year because of the preceding La Niña, which was moderate in strength.  And the latest 12-month period (Nov 2011 – Oct 2012) had a +0.53°C temperature anomaly.  This anomaly is likely to grow larger in the first part of 2013 as the early months of 2012 (influenced by La Niña) slide off.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The recent downturn (2010 to 2012) shows the effect of the latest La Niña event (see below for more) that ended in early 2012.  During the summer of 2012, ENSO conditions returned to a neutral state.  Therefore, the temperature trace (12-mo running mean) should track upward again as we proceed through 2013.

Photobucket

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through December 2012 from NASA.

According to NOAA, 2012’s global average temperatures were 0.57°C (1.03°F) above the 20th century mean of 13.9°C (57.0°F).  NOAA’s global temperature anomaly map for 2012 (duplicated below) reinforces the message: high latitudes continue to warm at a faster rate than the mid- or low-latitudes.

 photo 201201-201212_zps7a320a03.gif

Figure 2. Global temperature anomaly map for 2012 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

The continued anomalous warmth over Siberia is especially worrisome due to the vast methane reserves locked into the tundra and under the seabed near the region.  Methane is a stronger greenhouse gas than carbon dioxide over short time-frames (<100y),which is the leading cause of the warmth we’re now witnessing. As I discussed in the comments in post this summer, the warming signal from methane likely hasn’t been captured yet since the yearly natural variability and the CO2-caused warming signals are much stronger.  It is likely that we will not detect the methane signal for many more years.

These observations are also worrisome for the following reason: the globe came out of a moderate La Niña event in the first half of the year.  During the second half of the year, we remained in a ENSO-neutral state (neither El Niño nor La Niña):

 photo NinoSSTAnom20130118_zps4fd5c48d.gif

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

As the second time series graph (labeled NINO3.4) shows, the last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, SSTs peaked at +0.8 in September (y-axis).  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  So the globe’s temperatures were affected by a natural, low-frequency climate oscillation during the past couple of years.  And yet temperatures were still in the top-10 warmest for a calendar year in recorded history.

Indeed, this was the warmest La Niña year on record:

 photo NOAA-Temp_Anomalies_201301_zpsa1d00432.png

Figure 4. Anomalies of annual global temperature as measured by NOAA.  Blue bars represent La Niña years, red bars represent El Niño years, and gray bars represent ENSO-neutral years.

This figure shows that 2012 edged out 2011 as the warmest La Niña year on record (since 1950).  It also shows a clear trend seen in every temperature record of this length: La Niña years are getting warmer with time (note the difference between 2012 and 1956, for instance).  El Niño years are getting warmer with time (note the difference between 2010 and 1958).  ENSO-neutral years are getting warmer with time.  The globe got warmer throughout the 20th and into the 21st century.  Do not pay too much attention to any single year as “evidence” that global warming stopped.  As I stated above, natural low-frequency climate oscillations introduce a lot of noise into the temperature signal.  Climate is measured over decades and the decadal trend is obvious here: warmer with time.

Skeptics have pointed out that warming has “stopped” or “slowed considerably” in recent years, which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: if an energy imbalance exists (less outgoing energy than incoming) and the surface temperature rise has seemingly stalled, the excess energy has to be going somewhere.  That somewhere is likely to be the oceans, and specifically the deep ocean.  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as additional water vapor.  Thus, the immediate warming might have slowed down, but we have locked in future warming.

In my previous post on global temperatures, I pointed a few things out and asked some questions.  The Conference of Parties summit produced no meaningful climate action.  Countries agreed to have something on paper by 2015 and enacted by 2020.  If everything goes as planned, significant carbon reductions wouldn’t occur until later in the 2020s – too late to ensure <2°C warming by 2100.  If, as is much more likely, everything doesn’t go as planned, reductions wouldn’t occur until later than the 2020s.  Additional meetings are scheduled for later this year, but I maintain my expectation that nothing meaningful will come from them.  The international process is ill-equipped to handle all the legitimate interest groups in one fell swoop.

The northeast continues to recover from Superstorm Sandy.  New York and New Jersey began to plan for infrastructure with increased resilience from the next storm, which will eventually hit the area.  Congress took way too long to approve relief money (months, instead of days as it did after Katrina).  $60 billion will go a long ways toward assisting the region, especially if people take seriously the threat of living next to the ocean, which has been uncharacteristically quiet for decades.

Paying for recovery is and always will be more expensive than paying to increase resilience from disasters.  As drought continues to impact US agriculture, as Arctic ice continues to melt to new record lows, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how much grief we subject ourselves to.  As President Obama begins his second term and climate change “will be a priority in his second term”, he tosses aside the tool most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.  But be forewarned: even if we take action today, we will still see more warmest La Niña years, more warmest El Niño years, more ENSO-neutral years.


1 Comment

2012: Hottest Year On Record For United States

It’s official: 2012 was indeed the hottest year in 100+ years of record keeping for the contiguous U.S. (lower 48 states).  The record-breaking heat in March certainly set the table for the record and the heat just kept coming through the summer.  The previous record holder is very noteworthy.  2012 broke 1998′s record by more than 1°F!  Does that sound small?  Let’s put in perspective: that’s the average temperature for thousands of weather stations across a country over 3,000,000 sq. mi. in area for an entire year.  Previously to 2012, temperature records were broken by tenths of a degree or so.  Additionally, 1998 was the year that a high magnitude El Niño occurred.  This El Niño event caused global temperatures to spike to then-record values.  The latest La Niña event, by contrast, wrapped up during 2012.  La Niñas typically keep global temperatures cooler than they otherwise would be.  So this new record is truly astounding!

The official national annual mean temperature: 55.3°F, which was 3.3°F above the 20th century mean value of 52°F.

Photobucket

Figure 1 – NOAA Graph showing year-to-date average US temperatures from 1895-2012.

This first graph shows that January and February started out warmer than usual (top-5), but it was March that separated 2012 from any other year on record.  The heat of July also caused the year-to-date average temperature to further separate 2012 from other years.  Note the separation between 2012 and the previous five-warmest years on record from March through December.  Note further that four of the six warmest years on record occurred since 1999.  Only 1921 and 1934 made the top-five before 2012 and now 1921 will drop off that list.

Photobucket

Figure 2 – Contiguous US map showing state-based ranks of 2012 average temperature.

Nineteen states set all-time annual average temperature records.  This makes sense since dozens of individual stations set all-time monthly and annual temperature records.  Another nine states witnessed their 2nd warmest year on record.  Nine more states had top-five warmest years.  Only one state (Washington) wasn’t classified as “Much Above Normal” for the entire year.  The 2012 heat wave was extensive in space and severe in magnitude.

Usually, dryness tends to accompany La Niña events for the western and central US.  This condition was present again in 2012, as the next figure shows.

Photobucket

Figure 3 – Contiguous US map showing state-based ranks of 2012 average precipitation.

As usual, precipitation patterns were more complex than were temperature patterns.  Record dryness occurred in Nebraska and Wyoming.  Colorado and New Mexico saw bottom-five precipitation years.  Severely dry conditions spread across the Midwest all the way to the mid-Atlantic and Georgia continued to experience dryness.  Washington and Oregon were wetter than normal as a result of the northerly position of the mean jet stream in 2012.  Louisiana and Mississippi saw wetter than normal conditions, largely as a result of Hurricane Isaac.

Photobucket

Figure 4 – Contiguous US map showing state-based average actual precipitation.

I always find it useful to know the magnitude of measurements as well as how they stack up comparatively.  Figure 4 provides the former while Figure 3 provides the latter.  “Normal” precipitation varies widely across the country and even between neighboring states.  How much precipitation fell to allow NE and WY to record driest years on record?  13.04 and 8.03″, respectively.  Another useful map would be state-based difference from “normal”.

So the brutal heat that most Americans experienced was one for the record books.  As the jet stream remained in a more northerly than usual position, heat across the country dominated.  More heat and fewer storm systems in 2012 meant widespread and severe drought expanded across the country.  That drought tended to reinforce both the temperatures recorded (drying soils meant incoming solar radiation was more easily converted directly to sensible heat) and the lack of precipitation (dry soils required extra moisture to return to normal conditions).

Thankfully, record-setting temperatures didn’t occur all over the globe in 2012 (although Australia is having their own problems now in 2013).  I therefore don’t expect 2012 will be the warmest year on record globally, but a top-10 finish certainly is not out of the question.  Again, this is significant because of the extended La Niña event that ended in mid-2012.  Without the influence of anthropogenic (man-made) climate change, 2012 probably would have been cooler than will be recorded.  The background climate is warming and so La Niñas today are warmer than El Niños of yesterday.

These warming and drying conditions have massive implications for our society.  The drought that afflicted the Midwest in 2012 helped push up commodity prices as crops failed.  If that trend continues into 2013, prices will rise further, which will pinch all of our finances.  Drought in the Southwest and Midwest impacted flows in rivers (Colorado & Mississippi, among others).  The former could mean imposed restrictions in 2013 while the latter could mean reduced river transportation, which puts further pressure on goods sold in the US.  Conditions aren’t the worst recorded yet, but it is imperative that we examine resource management policies.  Are policies robust enough to handle the variability of today’s climate?  If not, they probably aren’t equipped to address future variability or change either.  What systems are critical to today’s society?  If the Southwest remains dry, does agriculture (largest user of CO river water) reduce its use or do urban users?  What sets of values guide these and other decision-making processes?


7 Comments

NASA & NOAA: October 2012 Was 2nd, 4th Warmest On Record

According to data released by NASA and NOAA this week, October 2012 was the 2nd and 4th warmest October’s (respectively) globally on record.  NASA’s analysis produced the 2nd warmest October in its dataset; NOAA recorded the 4th warmest October in its dataset.  The two agencies have slightly different analysis techniques, which in this case resulted in not only different temperature anomaly values but somewhat different rankings as well.

The details:

October’s global average temperatures were 0.69°C (1.24°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The warmest regions on Earth coincide with the locations where climate models have been projecting the most warmth to occur for years: high latitudes (especially within the Arctic Circle in July 2012).  The past three months have a +0.63°C temperature anomaly.  And the latest 12-month period (Nov 2011 – Oct 2012) had a +0.51°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The recent downturn (post-2010) is largely due to the latest La Niña event (see below for more) that recently ended.  ENSO conditions returned to a neutral state.  Therefore, the temperature trace (12-mo running mean) should track upward again, especially as cooler months fall off the running mean.

Photobucket

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through October 2012 from NASA.

According to NOAA, October’s global average temperatures were 0.63°C (1.13°F) above the 20th century mean of 14.0°C (57.2°F).  NOAA’s global temperature anomaly map for October (duplicated below) reinforces the message: high latitudes continue to warm at a faster rate than the mid- or low-latitudes.

Photobucket

Figure 2. Global temperature anomaly map for October 2012 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

The continued anomalous warmth over Siberia is especially worrisome due to the vast methane reserves locked into the tundra and under the seabed near the region.  Methane is a stronger greenhouse gas than carbon dioxide over short time-frames (<100y),which is the leading cause of the warmth we’re now witnessing. As I discussed in the comments in post this summer, the warming signal from methane likely hasn’t been captured yet since the yearly natural variability and the CO2-caused warming signals are much stronger.  It is likely that we will not detect the methane signal for many more years.

Of additional concern are the very warm conditions found over Greenland.  Indeed, record warmth was observed at a 3200m altitude station in early July.  3.6°C may not sound that warm in July, but the station’s location at 10,500ft altitude is of interest.  In contrast, continued warmth over portions of Greenland that have not witnessed such warmth did result in rapid melting during 2012.  There was recent news that described how much faster melt has occurred over Greenland (see associated picture) than expected in the IPCC AR4.  While the record-setting sea ice melt across the Arctic Ocean this year is important in some respects, at least melting sea ice doesn’t contribute to sea level rise.  The opposite is true for Greenland melt: every drop that makes it to the ocean raises the level.  When the melt is happening 3X faster than just 20 years ago, it’s time to pay attention (note: not panic!).

These observations are also worrisome for the following reason: the globe is experiencing ENSO-neutral conditions:

Photobucket

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

As the second time series graph (labeled NINO3.4) shows, the last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, SSTs peaked at +0.8 in September (y-axis).  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2009 to 2011.  Note that the darker lines (running means) started to increase at the end of 2011, following the higher frequency monthly data.  ENSO-nuetral conditions are expected to continue through the next 3-6 months, after which a new El Niño event might begin.

As the globe returns to ENSO-neutral conditions this winter, how will global temperatures respond?  Remember that global temperatures typically trail ENSO conditions by 3-6 months: the recent tropical Pacific warming trend should therefore help boost global temperatures back to their most natural state (i.e., without an ENSO (La Niña) signal on top of it, although other important signals might also occur at any particular point in time).

So what do we do?  I hope most readers are aware that the 18th Conference of Parties (COP-18) meeting is currently underway in Doha, Qatar.  I’ve stated my opinion before that I don’t think putting every country in the world around the table to negotiate a climate treaty is the most appropriate approach.  Canada, Russia, and Japan removed themselves from the Kyoto Protocol recently, which means that the only large emitters left are from the European Union.  I actually think that’s more appropriate: I prefer regional and bilateral agreements – countries should have pursued them more aggressively in the past 30 years.

More to the point, we should focus on  bottom-up approaches.  There are smaller groups of people who, if provided the right type of expertise and resources when needed, could probably enact changes that will result in decreasing emissions as well as successful adaptation policies.  The developed world is decarbonizing, but not fast enough yet.  I also recommend you watch China.  They invested very large sums of money in renewable energy and other green efforts.  That money will bear fruit in the future.  The rub, of course, is we cannot accurately predict when and how today.  It will also be interesting to see how the northeast U.S. reacts to Hurricane Sandy.  They have to rebuild infrastructure.  Will they include adaptive measures while they’re at it or will they kick the can down the road?


Leave a comment

Warmest Year on Record Likely For US in 2012

As readers of this blog are likely aware, 2012 was brutally hot across most of the U.S. in the spring and summer.  All-time records at hundreds of stations fell, monthly records were shattered, and seasonal records were similarly set.  These conditions led to speculation that 2012 would be the U.S.’s warmest.

That speculation is likely to be borne out as true.  Even though October was the first month in seventeen in which average contiguous U.S. temperatures were below average instead of above average, the January-October average temperature continued to track well above the previous record-setting year – 1998 – as the following graph demonstrates.

Photobucket

Figure 1. 2012 observed and projected contiguous U.S. temperature anomalies compared to previous top-5 anomalous years.

The current record holder is, of course, 1998 – the year which saw the strongest El Nino event of the 20th century end.  2012′s anomaly are therefore very important in context: a moderate La Nina event ended in 2012.  La Nina is typically characterized as a cooling event while El Nino is typically characterized as a warming event.  Now, those characterizations are global in nature, so interpreting their effects for the U.S. only gets more complex.  The point of this is the following: as the globe as a whole continues to warm and future El Ninos occur, the U.S. is likely to see warmer years than 2012.

The graph also contains the following information.  November and December would have to be among the ten coldest months on record in order for the 2012 average to dip below 1998′s record.  Well, November has been warmer than average so far through the first couple of weeks.  That trend is forecasted to continue for the next couple of weeks (not record-setting hot, just warmer than the 20th century average).  Therefore, the trend would have to absolutely reverse itself in December in order for 2012 to not set the new record.  Simply put, the chances of that happening are incredibly remote.

I haven’t blogged about it yet, but Hurricane Sandy’s landfall and subsequent widespread destruction might start small-scale conversations regarding the state of our infrastructure in today’s world.  Without even considering the potential future effects of anthropogenic global warming, it is clear to more and more people as weather disasters strike that we are not equipped as a society to adequately handle today’s climate.  Conditions have largely been beneficial to benign throughout the 20th century.  That wasn’t always the case prior to that and it’s likely that it won’t be the case in the future.  We have to have honest conversations about this and make hard decisions about what to build where and what industries our society should be built on.  What aid do we provide to farmers in areas that are drought-prone?  What aid do we provide to homeowners that live in high-risk areas?  What do our building codes and zoning laws allow today and should those same things be allowed in the future?  These are just a small sample of the kind of policy questions we have to ask when we see the above graph and many others like it.

#####

On another topic, I’m almost done with classes this semester.  I’ll get back to much more frequent posting in another month.

Follow

Get every new post delivered to your Inbox.

Join 247 other followers