Weatherdem's Weblog

Bridging climate science, citizens, and policy


2 Comments

State of Polar Sea Ice – March 2014: Arctic Sea Ice Maximum and Antarctic Sea Minimum

Global polar sea ice area in March 2014 remained at or near climatological normal conditions (1979-2008).  This represents early 2013 conditions continuing to present when sea ice area was at or above the average daily value.  Global sea ice area values consist of two components: Arctic and Antarctic sea ice.  Conditions are quite different between these two regions: Antarctic sea ice continues to exist abundantly while Arctic sea ice remained well below normal again during the past five months.

The NSIDC made a very important change to its dataset in June.  With more than 30 years’ worth of satellite-era data, they recalculated climatological normals to agree with World Meteorological Organization standards.  The new climatological era runs from 1981-2010 (see Figure 6 below).  What impacts did this have on their data?  The means and standard deviations now encompass the time period of fastest Arctic melt.  As a consequence, the 1981-2010 values are much lower than the 1979-2000 values.  This is often one of the most challenging conditions to explain to the public.  “Normal”, scientifically defined, is often different from “normal” as most people refer to it.  U.S. temperature anomalies reported in the past couple of years refer to a similar 1981-2010 “normal period”.  Those anomalies are smaller in value than if we compared them to the previous 1971-2000 “normal period”.  Thus, temperature anomalies don’t seem to increase as much as they would if scientists referred to the same reference period.

Arctic Sea Ice

According to the NSIDC, March 2014′s average extent was 14.80 million sq. km., a 730,000 sq. km. difference from normal conditions.  This value is the maximum for 2014 as more sunlight and warmer spring temperatures now allow for melting ice.  March 2014 sea ice extent continued a nearly two-year long trend of below normal values.  The deficit from normal was different each month during that time due to weather conditions overlaying longer term climate signals.  Arctic sea ice extent could increase during the next month or so depending on specific wind conditions, but as I wrote above, we likely witnessed 2014′s maximum Arctic sea ice extent 10 or so days ago.

Sea ice anomalies at the edge of the pack are of interest.  There is slightly more ice than normal in the St. Lawrence and Newfounland Seas on the Atlantic side of the pack.  Barents sea ice area, meanwhile, is slightly below normal.  Bering Sea ice recently returned to normal from below normal, while Sea of Okhotsk sea ice remains below normal.  The ice in these seas will melt first since they are on the edge of the ice pack and are the thinnest since they just formed in the last month.

March average sea ice extent for 2014 was the fifth lowest in the satellite record.  The March linear rate of decline is 2.6% per decade relative to the 1981 to 2012 average, as Figure 1 shows (compared to 13.7% per decade decline for September: summer ice is more affected from climate change than winter ice).  Figure 1 also shows that March 2014′s mean extent ranked fifth lowest on record.

 photo Arctic_monthly_sea_ice_extent_201403_zpsf13de46a.png

Figure 1 – Mean Sea Ice Extent for March: 1979-2014 [NSIDC].

Arctic Pictures and Graphs

The following graphic is a satellite representation of Arctic ice as of October 1st, 2013:

 photo Arctic_sea_ice_20131001_zps56b337ee.png

Figure 2UIUC Polar Research Group‘s Northern Hemispheric ice concentration from 20131001.

The following graphic is a satellite representation of Arctic ice as of January 15th, 2014:

 photo Arctic_sea_ice_20140115_zps96036b51.png

Figure 3UIUC Polar Research Group‘s Northern Hemispheric ice concentration from 20140115.

The following graphic is a satellite representation of Arctic ice as of April 1st, 2014:

 photo Arctic_sea_ice_20140401_zpsdd9dbc04.png

Figure 4 UIUC Polar Research Group‘s Northern Hemispheric ice concentration from 20140401.

I captured Figure 2 right after 2013′s date of minimum ice extent occurrence.  I wasn’t able to put together a post in January on polar sea ice, but captured Figure 3 for future reference.  You can see the rapid growth of ice area and extent in three month’s time.  Since January, additional sea ice formed, but not nearly as much as during the previous three months.  Figure 4 shows conditions just after the annual maximum sea ice area occurred.  From this point through late September, the overall trend will be melting ice – from the edge inward.

The following graph of Arctic ice volume from the end of January (PIOMAS updates are not available from the end of February or March) demonstrates the relative decline in ice health with time:

 photo SeaIceVolumeAnomaly_20140131_zpse02b6133.png

Figure 5PIOMAS Arctic sea ice volume time series through January 2014.

The blue line is the linear trend, identified as -3,000 km^3 (+/- 1,000 km^3) per decade.  In 1980, there was a +5,000 km^3 anomaly compared to 2013′s -6,000 km^3 anomaly – a difference of 11,000 km^3.  How much ice is that?  That volume of ice is equivalent to the volume in Lake Superior!

Arctic Sea Ice Extent

Take a look at March’s areal extent time series data:

 photo N_stddev_timeseries_20140401_1_zps069b9c1d.png

Figure 6NSIDC Arctic sea ice extent time series through early April 2014 (light blue line) compared with four recent years’ data, climatological norm (dark gray line) and +/-2 standard deviation envelope (light gray).

This figure puts winter 2013-14 into context against other recent winters.  As you can see, Arctic sea ice extent was at or below the bottom of the negative 2nd standard deviation from the 1981-2012 mean.  The 2nd standard deviation envelope covers 95% of all observations.  That means the past five winters were extremely low compared to climatology.  With the maximum ice extent in mid-March, 2014′s extent now hovers near record lows for the date.  Previous winters saw a late-season ice formation surge caused by specific weather patterns.  Those patterns are not likely to increase sea ice extent this boreal spring.  This doesn’t mean much at all for projections of minimum sea ice extent values, as the NSIDC discusses in this month’s report.

Antarctic Pictures and Graphs

Here is a satellite representation of Antarctic sea ice conditions from October 1, 2013:

 photo Antarctic_sea_ice_20131001_zps2fb64db9.png

Figure 7UIUC Polar Research Group‘s Southern Hemispheric ice concentration from 20131001.

And here is the corresponding graphic from January 15th, 2014:

 photo Antarctic_sea_ice_20140115_zpsd2a383a2.png

Figure 8UIUC Polar Research Group‘s Southern Hemispheric ice concentration from 20140115.

The following graphic is a satellite representation of Antarctic ice as of April 2nd, 2014:

 photo Antarctic_sea_ice_20140401_zpsd15f0ddf.png

Figure 9UIUC Polar Research Group‘s Southern Hemispheric ice concentration from 20140402.

Antarctic sea ice clearly hit its minimum between mid-January and early April.  In fact, that date was likely six weeks ago.  Antarctic sea ice is forming again as austral fall is underway.  As in recent austral summers, the lack of sea ice around some locations in Figure 8 is related to melting land-based ice.  Likewise,  sea ice presence around other locations is a good indication that there is less land-based ice melt.  Figure 8 looks different from other January’s prior to 2012 and 2013.  Additionally, Antarctic weather in recent summers differed from previous years in that winds blew land-based ice onto the sea, especially east of the Antarctic Peninsula (jutting up towards South America), which replenished the sea ice that did melt.  The net effect of the these and other processes kept Antarctic sea ice at or above the 1979-2008 climatology’s positive 2nd standard deviation, as Figure 10 below shows.

Finally, here is the Antarctic sea ice extent time series through early April:

 photo S_stddev_timeseries_20140401_zpscadac617.png

Figure 10NSIDC Antarctic sea ice extent time series through early April 2014.

The fact that Arctic ice extent continues well below average while Antarctic ice extent continues well above average for the past couple of years works against climate activists who claim climate change is nothing but disaster and catastrophe.  A reasonable person without polar expertise likely looks at Figures 6 and 10 and says, “I don’t see evidence of catastrophe here.   I see something bad in one place and something good in another place.”  For people without the time or inclination to invest in the layered nuances of climate, most activists come off sounding out of touch.  If climate change really were as clearly devastating as activists screamed it was, wouldn’t it be obvious in all these pictures and plots?  Or, as I’ve commented at other places recently, do you really think people who are insecure about their jobs and savings even have the time for this kind of information?  I don’t have one family member or friend that regularly questions me about the state of the climate, despite knowing that’s what I research and keep tabs on.  Well actually, I do have one family member, but he is also a researcher and works in supercomputing.  Neither he nor I are what most people would consider “average Joes” on this topic.

Policy

Given the lack of climate policy development at a national or international level to date, Arctic conditions will likely continue to deteriorate for the foreseeable future.  This is especially true when you consider that climate effects today are largely due to greenhouse gas concentrations from 30 years ago.  It takes a long time for the additional radiative forcing to make its way through the entire climate system.  The Arctic Ocean will soak up additional energy (heat) from the Sun due to lack of reflective sea ice each summer.  Additional energy in the climate system creates cascading and nonlinear effects throughout the system.  For instance, excess energy pushes the Arctic Oscillation to a more negative phase, which allows anomalously cold air to pour south over Northern Hemisphere land masses while warm air moves over the Arctic during the winter.  This in turn impacts weather patterns throughout the year (witness winter 2013-14 weather stories) across the mid-latitudes and prevents rapid ice growth where we want it.

More worrisome for the long-term is the heat that impacts land-based ice.  As glaciers and ice sheets melt, sea-level rise occurs.  Beyond the increasing rate of sea-level rise due to thermal expansion (excess energy, see above), storms have more water to push onshore as they move along coastlines.  We can continue to react to these developments as we’ve mostly done so far and allocate billions of dollars in relief funds because of all the human infrastructure lining our coasts.  Or we can be proactive, minimize future global effects, and reduce societal costs.  The choice remains ours.

Errata

Here are my State of Polar Sea Ice posts from October and July 2013. For further comparison, here is my State of Polar Sea Ice post from late March 2013.


1 Comment

Guest Teaching This Week

I’m guest teaching for my adviser’s Climate Policy Implications class while they are at a conference.  Yesterday was the easier task, as the class watched most of Leonardo DiCaprio’s “11th Hour“.  Like Gore’s “Inconvenient Truth”, DiCaprio makes widespread use of catastrophic visuals in the first 2/3 of the film.  I had discussions with classmates when I took this same class and others about the effects of these visuals.  Filmmakers design them to evoke strong emotional responses from viewers, which occurs even if you know what the intent is.  Beyond that intent, the images generate unintended consequences: viewers are left overwhelmed and feel helpless, which is the exact opposite reaction for which the film is likely designed.

The film contains spoken references to the same effect: “destroy nature”, “sick” and “infected” biosphere, “climate damage”, “Revenge of Nature”, “Nature has rights”, “nobody sees beauty”, “demise”, “destruction of civilization”, climate as a “victim”, “ecological crisis”, “brink”, “devastating”, and “environment ignored”.  These phrases and analogies project a separation between humans and nature; they romanticize the mythologized purity of nature, where nothing bad ever happens until the evil of mankind is unleashed upon it.  These concepts perpetuate the mindset that the movie tries to address and change.  That’s the result of … science.  As advocates of science, the interviewees in the film should support scientific results.  But they ignore critical social science findings of psychological responses to framing and imagery.  Why?  Because they’re locked into a tribal mindset and don’t critically analyze their own belief system.  All the while knocking the skeptics who don’t either.  I stopped using catastrophic language once I learned about these important scientific results.  The best I can do is advocate that these students do the same.

We didn’t finish watching the film during class, but the last handful of minutes we did watch did something few environmental-related films manage: stories of action and opportunity.  Filmmakers and climate activists need to stuff their efforts with these pieces, not pieces of destruction and hopelessness.  If you want to change the culture and mindset of society, you have to change your message.

Tomorrow, we’ll discuss the 11th Hour as well as this video: http://www.imdb.com/title/tt0492931/.  I also want to talk to the class (mostly undergraduate seniors, a couple of graduate students) about the scope of GHG emissions.  I’ve graded a few weeks’ worth of their homework essays and see clear parallels to the type of essays I wrote before I took additional graduate level science policy classes.  As my last post stated, too many scientists and activists get caught up using shorthand terms they really don’t understand (I should know, I used to do it too).  What does 400 ppm mean? 8.5 W/m^2?  2C warming?  Many of my science policy classes required translating these shorthand terms to units we can more intuitively grasp: number of renewable power plants required to reduce emissions to targets by certain dates.

My hope is that resetting the frame might elicit a different kind of conversation that what they’ve had so far this semester.  I also really enjoy talking about these topics with folks, so tomorrow should be fun.


Leave a comment

California’s Ongoing Drought & Related Climate News

California’s drought is severe and lengthy.  2013 was a record dry year for areas in the state with extensive data records: Los Angeles’s 3.60″ (14.93″ normal) and San Francisco’s 5.59″ (23.65″ normal) among others.  Recent research characterized California as drier than at any time in the past 500 years (an important point that I’ll return to below).  California experienced three consecutive very dry years (2011-2013), and 2014 provided little difference so far.  This dryness and the ensuing drought conditions are part of a longer term decadal-plus drought affecting the southwest US since 2000.

Additional metrics include:

Seventeen rural communities in California are in danger of running out of water within 60 to 120 days, according to a list compiled by state officials. As the drought goes on, more communities are likely to be added to the list.

With only about seven inches of rain in California in 2013 — far below the average of 22 inches — wells are running dry and many reservoirs are about 30 percent full (including Folsom Lake, shown above).

The Sierra snowpack, where California gets about a third of its water, was 88 percent below average as of Jan. 30.

Soon, people will face a lack of fresh water to their homes.  With reservoirs at record low levels, farmers will not be able to plant the crops they want which will reduce our food availability and increase food prices later this year.  This means the impacts will be local and national.  Moving forward, legal fights over very limited water will likely occur.  Folks are about to find out they water they’ve taken for granted is legally obligated to other users.  No one knows what the results will be, but many people have feared this very set of circumstances for a long time.

It would take between 8″ and 16″ of liquid water across most of California to break the drought.  That is unlikely to happen any time soon.  California’s drought is directly related to the snowy winter the eastern half of the nation experienced due to the persistent high-amplitude anomalous jet stream.  High pressure pushed the jet stream to the north over the western US while low pressure allowed the jet stream to dive south over the eastern US.  Usually such a pattern breaks down after a short time.  This winter’s jet stream has been essentially stuck for months now.

In related news, Arctic albedo decreased more than previously thought due to melting Arctic sea ice.  This phenomenon warms the Arctic, including the Arctic Ocean, which affects other parts of the globe, including the US.

And now back to the interesting point I wrote about above: CA is drier than at any point in the past 500 years.  Not forever, 500 years.  That means CA has been this dry in the past (the relatively recent past, in geologic time scales).  Moreover, we should all recall that CO2 concentrations were much lower 500 years ago than they are today.  That means that CA’s dryness is to some extent caused by natural variability.  The scientific question then becomes: “How much?”  Climate attribution studies remain at the forefront of climate research, which is another way of saying we don’t know how much natural variability plays a role in today’s dryness.

A NY Times article captured this recently:

While a trend of increasing drought that may be linked to global warming has been documented in some regions, including parts of the Mediterranean and in the Southwestern United States, there is no scientific consensus yet that it is a worldwide phenomenon. Nor is there definitive evidence that it is causing California’s problems.

The article notes that there are significant similarities between this drought and a similar drought in 1976-77.  What we do know is that temperatures are higher during this drought than they were in 1976-77, which exacerbates the drought’s effects.  What precipitation fell in 2013 evaporated more quickly than before because of warmer temperatures.  So we can say that a similar drought is occurring in a warmer environment, which is something relatively new and noteworthy.

An important point is that this drought is occurring in a world with higher CO2 concentrations than in 1976 or in the 1500s.  But this drought is similar to previous droughts.  Today’s higher CO2 concentrations aren’t the dominant cause of this drought.  Droughts later this century will likely have a more noticeable human fingerprint, but this drought could have (and did) occur in contemporary history.  There is nothing about today’s state of the climate (or 1970′s or 1930′s state of the climate) that precludes this drought.  Quite the opposite is true: this drought belongs to the state of the climate today, not tomorrow.

It is true that the southwest has been in some level of drought condition for 15 years or so.  Those conditions also exist in today’s climate.  They might also exist in the end of the century’s climate, but they will exhibit characteristics that we can’t foresee with any accuracy today.  That said, there are people today in the southwest US that this drought impacts.  That is the reality regardless of the anthropogenic or natural influence on the climate system.  The demand on annual available water now exceeds the supply.  That reality will increasingly shape the southwest in the near future, not the distant future.  Increasingly restrictive water usage policies are more likely than not.


1 Comment

State of Polar Sea Ice – September 2013: Arctic Sea Ice Minimum and Antarctic Sea Maximum

Global polar sea ice area in September 2013 was slightly below climatological normal conditions (1979-2008).  This represents a change from early 2013 conditions when sea ice area was at or above the average daily value.  Antarctic sea ice continues to exist abundantly while Arctic sea ice fell below normal again during the month.

The NSIDC made a very important change to its dataset in June.  With more than 30 years’ worth of satellite-era data, they recalculated climatological normals to agree with World Meteorological Organization standards.  The new climatological era runs from 1981-2010 (see Figure 6 below).  What impacts did this have on their data?  The means and standard deviations now encompass the time period of fastest Arctic melt.  As a consequence, the 1981-2010 values are much lower than the 1979-2000 values.  This is often one of the most challenging conditions to explain to the public.  “Normal”, scientifically defined, is often different than “normal” as most people refer to it.  U.S. temperature anomalies reported in the past couple of years refer to a similar 1981-2010 “normal period”.  Those anomalies are smaller in value than if we compared them to the previous 1971-2000 “normal period”.  Thus, temperature anomalies don’t seem to increase as much as they would if scientists referred to the same reference period.

Arctic Sea Ice

According to the NSIDC, September 2013′s average extent was only 5.35 million sq. km., a 1.17 million sq. km. difference from normal conditions.  This value is the minimum for 2013 as less sunlight and cooler autumn temperatures now allow for ice to refreeze.  September 2013 sea ice extent was 1.72 million square kilometers higher than the previous record low for the month that occurred in 2012.  The shift from a record low value one  year to a non-record low the next is completely normal.  Indeed, had Arctic sea ice extent fallen to a new record low, conditions this year would have been much more inhospitable to sea ice than they were.  To be clear, I do not cheer new record lows.  They are worthy of discussion not simply because of the record they set, but because they are part of a larger ongoing trend.  This year’s minimum extent value did not break that trend, it continued it.

Overall, conditions across the Arctic Ocean this summer prevented record-setting ice loss.  There were more clouds in 2013 than 2012.  Clouds reflect most incoming solar radiation, which means less sea ice melts.  At the end of the melt season, many small seas had normal sea ice extent, which is to say none.  Anomalous areas include the East Siberian Sea and the Arctic Basin, which recorded less sea ice extent than normal.

September average sea ice extent for 2013 was the sixth lowest in the satellite record. The 2012 September extent was 32% lower than this year’s extent.  The September linear rate of decline is 13.7% per decade relative to the 1981 to 2010 average, as Figure 1 shows.  Figure 1 also shows that September 2013′s mean extent ranked sixth lowest on record.  You can see from the graph that although a new record minimum was not set in 2013, the negative multi-year trend continued.

 photo Arctic_monthly_sea_ice_extent_201309_zpsf6898e0a.png

Figure 1 – Mean Sea Ice Extent for Septembers: 1979-2013 [NSIDC].

Continue reading


1 Comment

NASA & NOAA: August 2013 4th Warmest Globally On Record

According to data released by NASA and NOAA this month, August was the 4th warmest August globally on record.  Here are the data for NASA’s analysis; here are NOAA data and report.  The two agencies have different analysis techniques, which in this case resulted in different temperature anomaly values but the same overall rankings within their respective data sets.  The analyses result in different rankings in most months.  The two techniques do provide a check on one another and confidence for us that their results are robust.  At the beginning, I will remind readers that the month-to-month and year-to-year values and rankings matter less than the long-term climatic warming.  Monthly and yearly conditions changes primarily by the weather, which is not climate.

The details:

August’s global average temperature was 0.62°C (1.12°F) above normal (1951-1980), according to NASA, as the following graphic shows.  The past three months have a +0.58°C temperature anomaly.  And the latest 12-month period (Aug 2012 – Jul 2013) had a +0.59°C temperature anomaly.  The time series graph in the lower-right quadrant shows NASA’s 12-month running mean temperature index.  The 2010-2012 downturn was largely due to the latest La Niña event (see below for more) that ended early last summer.  Since then, ENSO conditions returned to a neutral state (neither La Niña nor El Niño).  Therefore, as previous anomalously cool months fall off the back of the running mean, and barring another La Niña, the 12-month temperature trace should track upward again throughout 2013.

 photo NASA-Temp_Analysis_20130831_zps3ff2a250.gif

Figure 1. Global mean surface temperature anomaly maps and 12-month running mean time series through August 2013 from NASA.

According to NOAA, April’s global average temperatures were 0.62°C (1.12°F) above the 20th century average of 15.6°C (60.1°F).  NOAA’s global temperature anomaly map for August (duplicated below) shows where conditions were warmer and cooler than average during the month.

 photo NOAA-Temp_Analysis_201308_zpsf2f24a41.gif

Figure 2. Global temperature anomaly map for August 2013 from NOAA.

The two different analyses’ importance is also shown by the preceding two figures.  Despite differences in specific global temperature anomalies, both analyses picked up on the same temperature patterns and their relative strength.

 photo NinoSSTAnom20130924_zps74ba969c.gif

Figure 3. Time series of weekly SST data from NCEP (NOAA).  The highest interest region for El Niño/La Niña is NINO 3.4 (2nd time series from top).

The last La Niña event hit its highest (most negative) magnitude more than once between November 2011 and February 2012.  Since then, tropical Pacific sea-surface temperatures peaked at +0.8 (y-axis) in September 2012.  You can see the effect on global temperatures that the last La Niña had via this NASA time series.  Both the sea surface temperature and land surface temperature time series decreased from 2010 (when the globe reached record warmth) to 2012.  Recent ENSO events occurred at the same time that the Interdecadal Pacific Oscillation entered its most recent negative phase.  This phase acts like a La Niña, but its influence is smaller than La Niña.  So natural, low-frequency climate oscillations affect the globe’s temperatures.  Underlying these oscillations is the background warming caused by humans, which we detect by looking at long-term anomalies.  Despite these recent cooling influences, temperatures were still top-10 warmest for a calendar year (2012) and during individual months, including August 2013.

Skeptics have pointed out that warming has “stopped” or “slowed considerably” in recent years, which they hope will introduce confusion to the public on this topic.  What is likely going on is quite different: since an energy imbalance exists (less energy is leaving the Earth than the Earth is receiving; this is due to atmospheric greenhouse gases) and the surface temperature rise has seemingly stalled, the excess energy is going somewhere.  The heat has to be going somewhere – energy doesn’t just disappear.  That somewhere is likely the oceans, and specifically the deep ocean (see figure below).  Before we all cheer about this (since few people want surface temperatures to continue to rise quickly), consider the implications.  If you add heat to a material, it expands.  The ocean is no different; sea-levels are rising in part because of heat added to it in the past.  The heat that has entered in recent years won’t manifest as sea-level rise for some time, but it will happen.  Moreover, when the heated ocean comes back up to the surface, that heat will then be released to the atmosphere, which will raise surface temperatures as well as introduce additional water vapor due to the warmer atmosphere.  Thus, the immediate warming rate might have slowed down, but we have locked in future warming (higher future warming rate).

 photo Ocean_heat_content_balmaseda_et_al_zps23184297.jpg

Figure 4. New research that shows anomalous ocean heat energy locations since the late 1950s.  The purple lines in the graph show how the heat content of the whole ocean has changed over the past five decades. The blue lines represent only the top 700 m and the grey lines are just the top 300 m.  Source: Balmaseda et al., (2013)

Paying for recovery from seemingly localized severe weather and climate events is and always will be more expensive than paying to increase resilience from those events.  As drought continues to impact the US, as Arctic ice continues its long-term melt, as storms come ashore and impacts communities that are not prepared for today’s high-risk events (due mostly to poor zoning and destruction of natural protections), economic costs will accumulate in this and in future decades.  It is up to us how many costs we subject ourselves to.  As President Obama begins his second term with climate change “a priority”, he tosses aside the most effective tool available and most recommended by economists: a carbon tax.  Every other policy tool will be less effective than a Pigouvian tax at minimizing the actions that cause future economic harm.  It is up to the citizens of this country, and others, to take the lead on this topic.  We have to demand common sense actions that will actually make a difference.

But be forewarned: even if we take action today, we will still see more warmest-ever La Niña years, more warmest-ever El Niño years, more drought, higher sea levels, increased ocean acidification, more plant stress, and more ecosystem stress.  The biggest difference between efforts in the 1980s and 1990s to scrub sulfur and CFC emissions and future efforts to reduce CO2 emissions is this: the first two yielded an almost immediate result.  It will take decades to centuries before CO2 emission reductions produce tangible results humans can see.  That is part of what makes climate change such a wicked problem.


2 Comments

48.2% of US in Moderate or Worse Drought – 17 Sep 2013 (Thank You, Monsoon!)

According to the Drought Monitor, drought conditions worsened slightly across the entire US compared to three weeks ago. As of September 17, 2013, 48.2% of the contiguous US is experiencing moderate or worse drought (D1-D4), as the early 2010s drought continues month after month.  This value is about 11 percentage points lower than it was in the early spring. The percentage area experiencing extreme to exceptional drought decreased from 14.8% last month to 6.9% last week!  This is more than 10% lower than it was six months ago. The eastern third of the US was wetter than normal during August, which helped keep drought at bay.  The east coast in particular was much wetter than normal and the summer monsoon was much more active this summer compared to 2012, assisted by a persistent upper level blocking pattern.  Instead of Exceptional drought in the West like there was earlier this summer, record rains and flash flooding was the story in September.  While this record-breaking series of events broke the drought in some areas of the West, long-term drought continues to exert its hold over the region.  Compared to earlier this summer, drought increased in area and intensity across the Midwest.

 photo USDrought20130917_zps29a0436a.gif

Figure 1US Drought Monitor map of drought conditions as of September 17th.

If we compare this week’s maps with previous dates (here and here, for example), we can see recent shifts in drought categories.  Compared to mid-August and early September, and despite recent rain events, drought expanded or worsened in the Midwest (Iowa, Missouri, Illinois, Minnesota, and the Dakotas) as well as Louisiana, Arkansas, and Mississippi.  On the other hand, alleviation is evident in small places in the West, as the following map shows.

 photo west_drought_monitor_20130917_zpsd2784c0e.png

Figure 2 – US Drought Monitor map of drought conditions in Western US as of September 17th.

After worsening during late winter into spring 2013, drought conditions steadied in late summer.  The differences between this map and early September’s is the reduction in area and severity of drought, especially in the southern half of the West.  The area experiencing Exceptional drought decreased significantly over the West and the percent area with no drought increased.  Figure 2 also shows that the percent area with no drought is still lower since the start of the calendar year (24% to 18%).

Here are the current conditions for Colorado:

 photo co_drought_monitor_20130917_zps9d17a4ef.png

Figure 3 – US Drought Monitor map of drought conditions in Colorado as of September 17th.

There is evidence of substantial improvement in Colorado since just a few weeks ago and certainly compared to earlier this year, when drought conditions were their worst.  Compared to the start of the calendar year or even three months ago, the percent area of every drought category decreased significantly.  Only 1.5% of the state currently has Exceptional drought.  Only 84% of the state is even experiencing any drought condition today, a far cry from the 100% that lasted for well over one year.  The links in the first paragraph dealing with last week’s rains combine with this graphic to demonstrate that places that receive one year’s worth of precipitation in one week’s time bust their drought!  Many communities would trade those record rains for a little bit of drought, given the extensive damage to infrastructure and the eight people who, as of this morning, perished in the severe weather event.

Let’s compare Figure 3 to similar Colorado maps from earlier in the year.  First, this is what conditions looked like just two weeks ago:

 photo CO_drought_monitor_201309033_zps07464c14.png

Figure 4 – US Drought Monitor map of drought conditions in Colorado as of September 3rd.

The over-active monsoon season helped reduce drought severity from Denver northwest toward the Wyoming border.  I said at the time I hoped that trend continued, but I could never imagine what would happen in the interim.

Here is a look at some of the worst drought conditions Colorado experienced in the past year, from late April 2013:

 photo CO_drought_monitor_20130425_zpsbf9ccb2d.png

Figure 5 – US Drought Monitor map of drought conditions in Colorado as of April 25th.

Conditions were horrible earlier this year.  Reservoir levels declined and crops failed as a result of the higher than normal temperatures and much lower than normal precipitation.  I certainly don’t want to see additional flooding, but I would like to see normal precipitation return to the state and the region.

 photo midwest_drought_monitor_20130917_zpsf91b6be4.png

Figure 6 – US Drought Monitor map of drought conditions in the Midwest as of September 17th.

Drought expanded in the Midwest in the past two weeks: the percent area with no drought decreased significantly from 48% to 43%.  Three months ago, the value was 93%.  This region collected rainfall this month, but the amounts continued to track below average.

 photo south_drought_monitor_20130917_zps76d5a2cf.png

Figure 7 – US Drought Monitor map of drought conditions in the South as of September 17th.

Compared to early summer, drought as a whole expanded across the South in 2013.  Instead of 44% area with no drought three months ago, there is only 16% today.

Policy Context

US drought conditions are more influenced by Pacific and Atlantic sea surface temperature conditions than the global warming observed to date.  Different natural oscillation phases preferentially condition environments for drought.  Droughts in the West tend to occur during the cool phases of the Interdecadal Pacific Oscillation and the El Niño-Southern Oscillation, for instance.  Beyond that, drought controls remain a significant unknown.  Population growth in the West in the 21st century means scientists and policymakers need to better understand what conditions are likeliest to generate multidecadal droughts, as have occurred in the past.  Without comprehensive planning, dwindling fresh water supplies will threaten millions of people.  That very circumstance is already occurring in western Texas where town wells are going dry.  An important factor in those cases is energy companies’ use of well water for natural gas drilling.  This presents a dilemma more of us will face in the future: do we want cheap energy or cheap water?  In the 21st century, we will not have both options available at the same time as happened in the 20th century.  This presents a radical departure from the past.

As drought affects regions differentially, our policy responses vary.  A growing number of water utilities recognize the need for a proactive mindset with respect to drought impacts.  The last thing they want is their reliability to suffer.  Americans are privileged in that clean, fresh water flows every time they turn on their tap.  Crops continue to show up at their local stores despite terrible conditions in many areas of their own nation (albeit at a higher price, as found this year).  Power utilities continue to provide hydroelectric-generated energy.

That last point will change in a warming and drying future.  Regulations that limit the temperature of water discharged by power plants exist.  Generally warmer climate conditions include warmer river and lake water today than what existed 30 years ago.  Warmer water going into a plant either means warmer water out or a longer time spent in the plant, which reduces the amount of energy the plant can produce.  Alternatively, we can continue to generate the same amount of power if we are willing to sacrifice ecosystems which depend on a very narrow range of water temperatures.  As with other facets of climate change, technological innovation can help increase plant efficiency.  I think innovation remains our best hope to minimize the number and magnitude of climate change impacts on human and ecological systems.


1 Comment

50.1% of the Contiguous United States in Moderate or Worse Drought – 3 Sep 2013

According to the Drought Monitor, drought conditions worsened slightly across the entire US compared to three weeks ago. As of September 3, 2013, 50.1% of the contiguous US is experiencing moderate or worse drought (D1-D4), as the early 2010s drought continues month after month.  This value is about 9 percentage points lower than it was in the early spring. The percentage area experiencing extreme to exceptional drought decreased from 14.8% three weeks ago to 9.9% last week; this is approximately 10% lower than it was six months ago. The eastern third of the US was wetter than normal during August, which helped keep drought at bay.  The east coast in particular was much wetter than normal and the summer monsoon was much more active this summer compared to 2012.  Instead of Exceptional drought in Georgia and Extreme drought in Florida two years ago, there is flash flooding and rare dam water releases in the southeast.  Four eastern states experienced their top-four wettest Julys on record.  The West presents a different story.  Long-term drought continues to exert its hold over the region, as it remained warmer than normal but six southwestern states received top-20 July precipitation this year.  Meanwhile, Oregon recorded its driest July on record.  Compared to three weeks ago, drought area increased in the Midwest.

 photo USDrought20130903_zpsf4845451.gif

Figure 1US Drought Monitor map of drought conditions as of September 3rd.

If we compare this week’s maps with previous dates (here and here, for example), we can see recent shifts in drought categories.  Compared to early July and mid-August, and despite recent rain events, drought expanded or worsened in the Midwest (Iowa, Missouri, Illinois, Minnesota, and the Dakotas) as well as Louisiana, Arkansas, and Mississippi.

 photo west_drought_monitor_20130903_zps6a3a6205.png

Figure 2 – US Drought Monitor map of drought conditions in Western US as of September 3rd.

After worsening during late winter into spring 2013, drought conditions steadied during the past month.  The differences between this map and mid-August’s is the spatial shift of conditions; the total percent area values are about the same.  The area experiencing Exceptional drought decreased slightly over the West and the percent area with no drought increased slightly, but remains at low levels.  Figure 2 also shows that the percent area with no drought decreased since the start of the year (24% to 14%).

Here are the current conditions for Colorado:

 photo CO_drought_monitor_201309033_zps07464c14.png

Figure 3 – US Drought Monitor map of drought conditions in Colorado as of September 3rd.

There is clear evidence of relief evident over the past three months here.  Severe drought area dropped from 72% to 60% (this was 100% about last year!).  Extreme drought area dropped from 27% to 22% (also down from 50%+ six months ago).  Exceptional drought decreased significantly from three and six months ago.  Instead of 16% of Colorado (and as much as 17% earlier this year), Exceptional drought now covers only 3% of the state.  The good news for southeastern Colorado was the recent delivery of substantial precipitation.  I didn’t think it would be enough to completely alleviate the worst conditions, but they received enough precipitation that drought conditions improved from Exceptional to Extreme.  Their drought is not over yet, but they are finally trending in a good direction.  And for the first time in over one year, some small percentage (2%; up from 1% three weeks ago) of Colorado does not currently have any drought.  This is great news – hopefully this area expands throughout the rest of the year.

 photo midwest_drought_monitor_20130903_zpseafbaad1.png

Figure 4 – US Drought Monitor map of drought conditions in the Midwest as of September 3rd.

Drought expanded and worsened slightly in the Midwest in the past few months: the percent area with no drought decreased significantly from 91% to 52%.  The percent area with Moderate drought increased significantly from 3% to 29% this week.  Severe drought now impacts most of Iowa and small portions of Missouri, Wisconsin and Minnesota.

US drought conditions are more influenced by Pacific and Atlantic sea surface temperature conditions than the global warming observed to date.  Different natural oscillation phases preferentially condition environments for drought.  Droughts in the West tend to occur during the cool phases of the Interdecadal Pacific Oscillation and the El Niño-Southern Oscillation, for instance.  Beyond that, drought controls remain a significant unknown.  Population growth in the West in the 21st century means scientists and policymakers need to better understand what conditions are likeliest to generate multidecadal droughts, as have occurred in the past.  Without comprehensive planning, dwindling fresh water supplies will threaten millions of people.  That very circumstance is already occurring in western Texas where town wells are going dry.  An important factor in those cases is energy companies’ use of well water for natural gas drilling.  This presents a dilemma more of us will face in the future: do we want cheap energy or cheap water?  In the 21st century, we will not have both options available at the same time as happened in the 20th century.  This presents a radical departure from the past.

As drought affects regions differentially, our policy responses vary.  A growing number of water utilities recognize the need for a proactive mindset with respect to drought impacts.  The last thing they want is their reliability to suffer.  Americans are privileged in that clean, fresh water flows every time they turn on their tap.  Crops continue to show up at their local stores despite terrible conditions in many areas of their own nation (albeit at a higher price, as found this year).  Power utilities continue to provide hydroelectric-generated energy.

That last point will change in a warming and drying future.  Regulations that limit the temperature of water discharged by power plants exist.  Generally warmer climate conditions include warmer river and lake water today than what existed 30 years ago.  Warmer water going into a plant either means warmer water out or a longer time spent in the plant, which reduces the amount of energy the plant can produce.  Alternatively, we can continue to generate the same amount of power if we are willing to sacrifice ecosystems which depend on a very narrow range of water temperatures.  As with other facets of climate change, technological innovation can help increase plant efficiency.  I think innovation remains our best hope to minimize the number and magnitude of climate change impacts on human and ecological systems.


1 Comment

Energy Generation Now & in the Future

I finished my last post with an important piece of data.  Out of 100 quads of energy the US generates every year, the vast majority of it (83%) comes from fossil fuel sources – sources that emit greenhouse gases when we burn them.  The same is true for the vast majority of other countries, and therefore for the global portfolio as well.  Here is a graphic showing global energy consumption distribution by fuel type from 1990 through 2010 and into the future:

 photo EIA-WorldEnergyConsumptionbyfueltype1990-2040_zps8d8ae886.png

Figure 1. Global fuel-type energy consumption, 1990-2040 (EIA 2013 Energy Outlook).

The global picture is somewhat different from the US picture: liquids’ energy (e.g., oil) exceed coal energy, which exceed natural gas.  All three of these carbon-intensive energy sources, which power our developed, high-wealth lifestyles, greatly exceed renewables (which hydropower dominates), which exceeds nuclear.  It is these type of energy forecasts that lead to the suite of IPCC emissions pathways:

 photo IPCCAR5RCPScenarios_zps69b8b0d5.png

Figure 2. IPCC Fifth Assessment Report Representative Concentration Pathway (RCP) CO2-eq concentrations.

Note that our current emissions trajectory more closely resembles the RCP8.5 pathway (red) than the other pathways.  This trajectory could lead to a 1000+ ppm CO2-eq concentration by 2100, or 2.5X today’s concentration value.  Stabilizing global temperature increases at less than 2C by 2100 requires stabilizing CO2-eq concentrations below 450 and quickly decreasing, which is best represented by the RCP2.6 pathway above (green).  This pathway is technologically impossible to achieve as of today.  The only way to make it possible is to invest in innovation: research, development, and global deployment of low-carbon technologies.  We are not currently doing that investment; nor does it look likely we will in the near future.

Let’s take a further look at the recent past before we delve further into the future.  Environmental and renewable energy advocacy groups tout recent gains in renewable energy deployment.  We should quietly cheer such gains because they are real.  But they are also miniscule – far too little deployment at a time when we need exclusive and much wider deployment of renewable energy globally to shift our emissions pathway from RCP8.5 to RCP2.6.  Here is a graphic showing global use of coal in the past 10+ years:

 photo WorldCoalConsumption-2001-2011_zps68aea439.jpg

Figure 3. Global coal use in million tonnes of oil-equivalent 2001-2011 (Grist).

Climate and clean energy advocates like to report their gains in percentage terms.  This is one way of looking at the data, but it’s not the only way.  For instance, coal usage increased by 56% from 2001 to 2011.  This is a smaller percentage than most renewable energy percentage gains in the same time period, but the context of those percentages is important.  As you’ll see below, renewable energy gains really aren’t gains in the global portfolio.  The above graph is another way to see this: if renewable energy gains were large enough, they would replace coal and other fossil fuels.  That’s the whole point of renewable energy and stabilizing carbon emissions, right?  If there is more renewable energy usage but also more coal usage, we won’t stabilize emissions.  Here is another way of looking at this statement:

 photo GlobalEnergyConsumption-Carbon-FreeSources1965-2012_zps1a06c9a0.png

Figure 4. Global Energy Consumption from Carbon-Free Sources 1965-2012 (Breakthrough).

Carbon-free energy as a part of the total global energy portfolio increased from 6% in 1965 to 13% in the late 1990s.  This is an increase of 200% – which is impressive.  What happened since the 1990s though?  The proportion was actually smaller in 2011 than it was in 1995 in absolute terms.  At best, carbon-free energy proportions stagnated since the 1990s.  Countries deployed more carbon-free energy in that time period, but not enough to increase their proportion because so much new carbon energy was also deployed.  What happened starting in the 1990s?  The rapid industrialization of China and India, predominantly.  Are developing countries going to stop industrializing?  Absolutely not, as Figure 1 showed.  It showed that while renewable energy consumption will increase in the next 30 years, it will likely do so at the same rate that natural gas and liquids will.  The EIA projects that the rate of increase of coal energy consumption might level off in 30 years, after we release many additional gigatonnes of CO2 into the atmosphere, ensuring that we do no stabilize at 450 ppm or 2°C.

Here is the EIA’s projection for China’s and India’s energy consumption in quads, compared to the US through 2040:

 photo EIA-EnergyConsumption-US-CH-IN1990-2040_zps70837e84.png

Figure 5. US, Chinese, and Indian energy consumption (quads) 1990-2040 (EIA 2013 Energy Outlook).

You can see the US’s projected energy consumption remains near 100 quads through 2040.  China’s consumption exceeded the US’s in 2009 and will hit 200 quads (2 US’s!) by 2030 before potentially leveling off near 220 quads by 2040.  India’s consumption was 1/4 the US’s in 2020 (25 quads), and will likely double by 2040.  Where will an additional 1.5 US’s worth of energy come from in the next 30 years?  Figure 1 gave us this answer: mostly fossil fuels.  If that’s true, there is no feasible way to stabilize CO2 concentrations at 450 ppm or global mean temperatures at 2°C.  That’s not just my opinion; take a look at a set of projections for yourself.

Here is one look at the future energy source by type:

 photo GlobalEnergyByType-2013ProjectionbyBNEF_zps36f9806f.jpg

Figure 6. Historical and Future Energy Source by Type (BNEF).

This projection looks rosy doesn’t it?  Within 10 years, most new energy will come from wind, followed by solar thermal.  But look at the fossil fuels!  They’re on the way out.  The potential for reduced additional fossil fuel generation is good news.  My contention is that it isn’t happening fast enough.  Instead of just new energy, let’s look at the cumulative energy portfolio picture:

 photo GlobalEnergyTotalByType-2013ProjectionbyBNEF_zps88331d51.jpg

Figure 7. Historical and Future Total Energy Source by Type (BNEF).

This allows us to see how much renewable energy penetration is possible through 2030.  The answer: not a lot, and certainly not enough.  2,000 GW of coal (>20% of total) remains likely by 2030 – the same time when energy experts say that fossil fuel use must be zero if CO2 concentrations are to remain below 450 ppm by 2100.  But coal isn’t the only fossil fuel and the addition of gas (another 1,700 GW) and oil (another 300 GW) demonstrates just how massive the problem we face really is.  By 2030, fossil fuels as a percentage of the total energy portfolio may no longer increase.  The problem is the percentages need to decrease rapidly towards zero.  Nowhere on this graph, or the next one, is this evident.  The second, and probably more important thing, about this graph to note is this: total energy increases at an increasing rate through 2030 as developing countries … develop.

 photo EIA-WorldEnergyConsumptionbyfueltype1990-2040_zps8d8ae886.png

Figure 8. Global fuel-type energy consumption, 1990-2040 (EIA 2013 Energy Outlook).

The EIA analysis agrees with the BNEF analysis: renewables increase through 2030.  The EIA’s projection extends through 2040 where the message is the same: renewables increase, but so do fossil fuels.  The only fossil fuel that might stop increasing is the most carbon intensive – coal – and that is of course a good thing.  But look at the absolute magnitudes: there could be twice as many coal quads in 2040 as there were in 2000 (50% more than 2010).  There could also be 50% more natural gas and 30% more liquid fuels.  But the message remains: usage of fossil fuels will likely not decline in the next 30 years.  What does that mean for CO2 emissions?

 photo EIA-WorldEnergy-RelatedCO2Emissionsbyfueltype1990-2040_zps417bffc4.png

Figure 9. Historical and projected global carbon dioxide emissions: 1990-2040 (EIA 2013 Energy Outlook).

Instead of 14 Gt/year (14 billion tonnes per year) in 2010, coal in 2040 will emit 25 Gt/year – almost a doubling.  CO2 emissions from natural gas and liquids will also increase – leading to a total of 45 GT/year instead of 30 GT/year.  The International Energy Agency (IEA) estimated in 2011 that “if the world is to escape the most damaging effects of global warming, annual energy-related emissions should be no more than 32Gt by 2020.”  The IEA 2012 World Energy Outlook Report found that annual carbon dioxide emissions from fossil fuels rose 1.4 percent in 2012 to 31.6 Gt.  While that was the lowest yearly increase in four years, another similar rise pushes annual emissions over 32Gt in 2014 – six years ahead of the IEA’s estimate.  Based on the similarity between our historical emissions pathway and the high-end of the IPCC’s AR4 SRES scenarios (see figure below), 2°C is no longer a viable stabilization target.

 photo CO2_Emissions_IPCC_Obs_2012_zpsd3f8cb8f.jpg

Figure 10. IEA historical annual CO2 emissions and IPCC AR4 emissions scenarios: 1990-2012 (Skeptical Science).

The A2 pathway leads to 3 to 4°C warming by 2100.   Additional warming would occur after that, but most climate science focus ends at the end of this century.  A huge caveat applies here: that warming projection comes from models that did not represent crysophere or other processes.  This is important because the climate system is highly nonlinear.  Small changes in input can induce drastically different results.  A simple example of this is a change in input from 1 to 2 doesn’t mean a change in output from 1 to 2.  The output could change to 3 or 50, and we don’t know when the more drastic case will take place.  Given our best current but limited understanding of the climate system, 3 to 4°C warming by 2100 (via pathway A2) could occur.  Less warming, given the projected emissions above, is much, much less likely than more warming than this estimate.  Policy makers need to shift focus away from 2°C warming and start figuring out what a 3 to 4°C warmer world means for their area of responsibility.  Things like the timing of different sea level rise thresholds and how much infrastructure should we abandon to the ocean?  Things like extensive, high-magnitude drought and dwindling fresh water supplies.  These impacts will have an impact on our lifestyle.  It is up to us to decide how much.  The graphs above and stories I linked to draw this picture for me: we need to change how we approach climate and energy policy.  The strategies employed historically were obviously inadequate to decarbonize at a sufficient rate.  We need to design, implement, and evaluate new strategies.


6 Comments

45.3% of the Contiguous United States in Moderate or Worse Drought – 15 Aug 2013

According to the Drought Monitor, drought conditions improved recently across some of the US. As of Aug 15, 2013, 45.3% of the contiguous US is experiencing moderate or worse drought (D1-D4), as the early 2010s drought continues month after month.  This value is about 10 percentage points lower than it was in the early spring. The percentage area experiencing extreme to exceptional drought increased from 14.6% to 14.8%; this is approximately 4% lower than it was six months ago. The eastern third of the US was wetter than normal during July into August, which helped keep drought at bay.  The east coast in particular was much wetter than normal and the summer monsoon was much more active this summer compared to 2012.  Instead of Exceptional drought in Georgia and Extreme drought in Florida two years ago, there is flash flooding and rare dam water releases in the southeast.  Four eastern states experienced their top-four wettest Julys on record.  The West presents a different story.  Long-term drought continues to exert its hold over the region, as it remained warmer than normal but six southwestern states received top-20 July precipitation this year.  Meanwhile, Oregon recorded its driest July on record.

 photo USDrought20130815_zpse8a61c7f.gif

Figure 1US Drought Monitor map of drought conditions as of August 13th.

If we compare this week’s maps with previous dates (here and here, for example), we can see recent shifts in drought categories.  Compared to early July, and despite recent rain events, drought expanded in the Midwest (into Iowa, Missouri, Illinois, and Minnesota) as well as Louisiana, Arkansas, and Mississippi.

Here is the Western US drought map this week:

 photo west_drought_monitor_20130815_zpsb980edee.png

Figure 2 – US Drought Monitor map of drought conditions in Western US as of August 15th.

After worsening during late winter into spring 2013, drought conditions steadied during the past month.  The differences between this map and early July’s is the spatial shift of conditions; the total percent area values are about the same.

Temporary drought relief occurred over parts of Arizona and Colorado as the summer monsoon brought moisture northward and interacted with cooler air masses than normal from Canada.

Here are the current conditions for Colorado:

 photo CO_drought_monitor_20130815_zps0644308d.png

Figure 3 – US Drought Monitor map of drought conditions in Colorado as of July 9th.

There is clear evidence of relief evident over the past three months here.  Severe drought area dropped from 72% to 69% (this was 100% about six months ago!).  Extreme drought area dropped slightly from 27% to 26% (also down from 50%+ six months ago).  Exceptional drought is down significantly from three and six months ago.  Instead of 17% of Colorado, Exceptional drought now covers only 3% of the state.  The good news for southeastern Colorado was the recent delivery of substantial precipitation.  I didn’t think it would be enough to alleviate the worst conditions, but they received enough precipitation that drought conditions improved from Exceptional to Extreme.  Their drought is not over yet, but they are finally trending in a good direction.  And for the first time in over one year, some small percentage (1%) of Colorado does not currently have any drought condition.  This is great news – hopefully this area expands throughout the rest of the year.

US drought conditions are more influenced by Pacific and Atlantic sea surface temperature conditions than the global warming observed to date.  Different natural oscillation phases preferentially condition environments for drought.  Droughts in the West tend to occur during the cool phases of the Interdecadal Pacific Oscillation and the El Niño-Southern Oscillation, for instance.  Beyond that, drought controls remain a significant unknown.  Population growth in the West in the 21st century means scientists and policymakers need to better understand what conditions are likeliest to generate multidecadal droughts, as have occurred in the past.  Without comprehensive planning, millions of people dwindling fresh water supplies will threaten millions of people.  That very circumstance is already occurring in western Texas where town wells are going dry.  An important factor in those cases is energy companies’ use of well water for natural gas drilling.  This presents a dilemma more of us will face in the future: do we want cheap energy or cheap water?  In the 21st century, both options will not be available at the same time as they were in the 20th century.  This presents a radical departure from the past.

As drought affects regions differentially, our policy responses vary.  A growing number of water utilities recognize the need for a proactive mindset with respect to drought impacts.  The last thing they want is their reliability to suffer.  Americans are privileged in that clean, fresh water flows every time they turn on their tap.  Crops continue to show up at their local stores despite terrible conditions in many areas of their own nation (albeit at a higher price, as found this year).  Power utilities continue to provide hydroelectric-generated energy.

That last point will change in a warming and drying future.  Regulations that limit the temperature of water discharged by power plants exist.  Generally warmer climate conditions include warmer river and lake water today than what existed 30 years ago.  Warmer water going into a plant either means warmer water out or a longer time spent in the plant, which reduces the amount of energy the plant can produce.  Alternatively, we can continue to generate the same amount of power if we are willing to sacrifice ecosystems which depend on a very narrow range of water temperatures.  As with other facets of climate change, technological innovation can help increase plant efficiency.  I think innovation remains our best hope to minimize the number and magnitude of climate change impacts on human and ecological systems.

Follow

Get every new post delivered to your Inbox.

Join 247 other followers